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PREFACE 
 

Although Thomas Addison had described a lethal form of anaemia 

associated to severe neurological signs in the 1850s, it has been necessary to 

wait one century till Dorothy Hodgkin was able to identify the structure of the 

molecule the lack of which is responsible for these disorders, the so called 

vitamin B12 (cobalamin (Cbl)). 

Since then, another half of a century has passed and the corrinoid structure 

of Cbls is now known. New analogues (e.g. antivitamins) have been found 

and/or realized and their interesting applications in biomedicine described. 

Significant progress has also been achieved, allowing the understanding of 

complicated steps of Cbl transport mechanisms that include almost ten actors 

(e.g. amnionless, megalin, soluble CD320, etc.). 

Besides the function of the co-enzyme, a new role for Cbl was identified 

almost twenty years ago. In fact, Cbl has an epigenetic involvement in the 

regulation of cytokines, growth factors and Cbl-linked transporters/enzymes. 

These epigenetic mechanisms could also be involved in the oncogenetic 

process. 

In addition, the involvement of Cbl in new areas of medicine has been 

identified. For example, in Cbl-deficient status an alteration of immune 

function or severe failure to thrive have been identified. In nutrition, the 

precise identification of Cbl-rich food has been done. 

Despite the process in understanding the importance of Cbl, the research 

must go on. In this book, readers will understand that there is still need of 

analysing several aspects like the mechanisms of epigenetic regulation as well 

as the real effect and the pharmacological application of Cbl in some human 

organs (i.e., the role of Cbl in cardiovascular disorders). 

This book is written from three groups of ―cobalaminlogist‖ and one 

pharmacologist with the intention of not only providing technical information 
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for clinical and biological purposes, but also laying the foundation for a new 

and alternative approach to Cbl, including nutrigenomics and a holistic study 

of the Cbl-deficiency effects. 
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ABBREVIATIONS 
 

ACA  ATP:cob(I)alamin adenosyltransferase  

(named here: adenosylcobalamin--ligase) 

Ado  5‘-deoxy-5‘-adenosyl 

AdoCbl  5'-deoxy-5'-adenosyl-cobalamin (often named adenosyl- 

cobalamin, coenzyme B12) 

ALAS aminolevulinic acid synthase 

ATP  adenosine-5‘-triphosphate 

B12r   cob(II)alamin 

B12s  cob(I)alamin 

BDE  (homolytic) bond dissociation energy 

Cbl   cob(III)alamin (DMB-cob(III)amide); cobalamin 

Cbl(I)  cob(I)alamin 

Cbl(II)  cob(II)alamin 

CblC methylmalonic aciduria type C and homocystinuria (named  

here: cobalamin--deligase) 

Cbl-D Cbl-deficient 

CNCbl  vitamin B12 (cyanocob(III)alamin) 

CNS central nervous system  

DMB 5,6-dimethylbenzimidazol 

EGF epidermal growth factor  

EGF-R EGF receptor 

FAD  flavine adenine dinucleotide 

FMN  flavine mononucleotide 

Gth  glutathionyl 

H2OCbl 
+
 aquocobalamin (cation) 

HBA  hydrogenobyrinic acid  

HC   haptocorrin 
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hMS (human) methionine synthase 

HOCbl  hydroxocobalamin 

holoTC holotranscobalamin 

IF   intrinsic factor 

IFD  IF deficiency 

IGS  Imerslund–Gräsbeck syndrome 

IL   interleukin 

MCM  methylmalonyl-CoA mutase (old: MMCM) 

MeCbl  methylcobalamin 

MMA  methylmalonic acid  

MRP1 multiple drug resistance protein 1 

N2O  nitrous oxide 

NADPH  dihydronicotinamide adenine dinucleotide phosphate 

NGF nerve growth factor 

NMR  nuclear magnetic resonance 

PBG  porphobilinogen 

PBGS  porphobilinogen synthase 

PBGD PBG deaminase 

PrP
C
 cellular prion protein 

SAM  S-adenosylmethionine 

SC  spinal cord  

SN2  bimolecular nucleophilic substitution 

TC   transcobalamin 

tHcy total homocysteine  

TNF-α tumor necrosis factor-α 

uro‘gen III uroporphyrinogen III 

UROS urophorphyrinogen synthase 

δ-ALA  δ-aminolevulinic acid 

ΨCNCbl  pseudovitamin B12 
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NATURAL COBALAMINS – THEIR 

STRUCTURE, CHEMICAL REACTIVITY  

AND CO-ENZYMATIC ROLE 
 

 

Miriam Hunger and Bernhard Kräutler
* 

Institute of Organic Chemistry and Center of Molecular Biosciences, 

University of Innsbruck, Innsbruck, Austria 
 

 

ABSTRACT 
 

The "antipernicious anemia factor" vitamin B12 (cyanocobalamin, 

CNCbl) is a unique ―complete‖ corrinoid, classified as a cobalamin (Cbl). 

In humans, instead of the "vitamin" CNCbl, the organometallic  

B12-derivatives methylcobalamin (MeCbl) and coenzyme B12 

(adenosylcobalamin) serve as cofactors of methionine synthase and of 

methylmalonyl-CoA mutase, respectively. Cytoplasmatic methionine 

synthase catalyzes the synthesis of methionine from homocysteine. The 

mitochondrial methylmalonyl-CoA mutase isomerizes methylmalonyl-

CoA to succinyl-CoA. The Cbl-processing enzyme CblC prepares Cbls 

for their biosynthetic conversion into B12-cofactors. In mitochondria, an 

adenosyl-transferase installs the organometallic group of coenzyme B12. 

In all of these enzymatic processes, the bound B12-derivatives engage (or 

are formed) in exceptional organometallic reactions. This chapter 

recapitulates chemistry of vitamin B12 relevant in B12-dependent enzymes 

and in the biosynthesis of the B12-cofactor forms. 

                                                        
* 
Corresponding author: bernhard.kraeutler@uibk.ac.at. 
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Keywords: cobalamin, coenzyme B12, methionine synthase, methylcobalamin, 

methylgroup transfer, methylmalonyl-CoA mutase, radical reaction, 

vitamin B12. 

 

 

INTRODUCTION 
 

The availability of an (extrinsic) ―antipernicious anemia factor‖ in raw 

liver was discovered in the 1920s, when the pathologist G.H. Whipple treated 

dogs that suffered from pernicious anemia. Minot and Murphy subsequently 

also cured their anemia patients in this way. About a quarter of a century later, 

vitamin B12 (cyanocobalamin, CNCbl) was isolated by the groups of Folkers 

(USA) and Smith & Parker (England) as a red cyanide-containing cobalt-

complex (Figure 1). [1] 

 

 

Figure 1. Left: Structural formula of cobalamins (Cbl). Right: Symbols of selected 

cobalamins: cyanocobalamin (CNCbl, vitamin B12), hydroxycobalamin (HOCbl), 

methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl, coenzyme B12). 
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The structure of B12-derivatives was deduced by the pioneering X-ray 

crystal studies of Hodgkin et al. (Figure 2, left). Crystal studies also 

deciphered the amazing organometallic nature of coenzyme B12 (Figure 2, 

right). [2] Accurate structures of a range of B12-derivatives have been 

analyzed, as reviewed recently. [3, 4]  

Important earlier contributions to the biologically relevant chemistry of 

B12 were reviewed. [5, 6] During the last decades [4, 7-9], new insights were 

obtained concerning the role of vitamin B12 in humans and animals, driven by 

the first structures of B12-dependent enzymes and B12-transport proteins, [4, 

10-14] by mechanistic studies of B12-dependent enzymes, [8] as well as by 

investigations on B12-deficiencies. [15-18] Cobalamins (Cbls) are essential to 

humans and animals, and Cbl-deficiency results in deadly diseases, as outlined 

elsewhere in this book. 

 

 

NATURAL COBALAMINS 
 

Cobalamins (5',6'-dimethylbenzimidazolylcobamides) are widely occu-

rring as ‗complete‘ corrinoids, which are covalent conjugates of cobyric acid 

(an ‗incomplete‘ corrinoid) and a nucleotide function. In cobalamins, the latter 

carries a 5,6-dimethylbenzimidazole (DMB) base. CNCbl is the most 

important commercial form of the naturally occurring Cbls. It is a relatively 

inert Co(III)-corrin and crystallizes readily. Interestingly, a direct phys-

iological function of CNCbl is not known. [15, 19] The physiologically 

relevant B12-derivatives in humans are the light-sensitive organometallic 

cofactors coenzyme B12 (5'-deoxy-5'-adenosylcobalamin, AdoCbl) and 

methylcobalamin (MeCbl). [7, 9, 20]  

 

 

Structure of Cobalamins 
 

Natural cobalamins (Cbls) carry different cobalt-bound ―upper‖ or β-

ligands, e.g., cyanide in vitamin B12 (CNCbl, Figure1). Their central 

cobalt(III)-ion is coordinated six-fold, in a pseudo-octahedral arrangement. 

The four nitrogen atoms of the corrin ligand occupy the ‗equatorial‘ positions 

at the cobalt center. The typical helical (non-planar) geometry of the corrin 

moiety derives from a saturated and direct trans-junction between the 

‗Western‘ rings A and D. [23] The DMB-base is coordinated at the ―lower‖ 

(α-position) in the typical (and thermodynamically more stable) ‗base-on‘ 
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form of the Cbls. The Coβ-ligand influences the ‗base-on/base-off‘ equilibria, 

[4] and its increasing σ-donor property [23, 24] correlates with a sizable 

stretch of the axial Coα-N bond to DMB. At low pH, protonation of the 

nucleotide base generates the ‗base-off‘ constitution of cob(III)alamins. The 

ease of this process reflects the stabilization of the ‗base-on‘ form by the 

intramolecular DMB-coordination (Figure 3).  

 

  

Figure 2. Crystal structures of vitamin B12 (CNCbl, left) [21] and of coenzyme B12 

(AdoCbl, right) [22] - color code: red = cobalt-corrin moiety; green = nucleotide 

moiety; blue = axial -ligand. 

Nuclear Magnetic Resonance (NMR) spectroscopy has become another 

important method for studying the structure of B12 derivatives in (aqueous) 

solution. Using heteronuclear NMR experiments, the structures of cobalamins 

were analyzed in aqueous solution, giving insights into the dynamic behavior 

of B12-derivatives, such as AdoCbl. [25, 26]  

 

 

CHEMICAL REACTIVITY 
 

Redox Chemistry 
 

Under physiological conditions, B12-derivatives exist in three oxidation 

states (as Co(III)-, Co(II)- and Co(I)-corrins), all differing strongly in their 

reactivity and coordination properties. The number of axial ligands of 

cobalamins decreases in parallel to their oxidation state (see Figure 3). [27, 4] 
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Figure 3. Redox-transitions between six-coordinated aquo-cob(III)alamin, five-

coordinated cob(II)alamin and four-coordinated cob(I)alamin. 

 

Cob(III)alamins, such as aquocobalamin (H2OCbl
+
), are red, when ‗base-

on‘. One-electron reduction results in cob(II)alamin, loss of the β-ligand and a 

colour change to brown. The paramagnetic (low-spin) cob(II)alamin is a 

radicaloid, occurring in the ‗base-on‘ form in neutral aqueous solution. Further 

one-electron reduction gives the green, diamagnetic cob(I)alamin with a four-

coordinate and very nucleophilic Co(I)-center. Cob(I)alamin reacts rapidly 

with alkyl halides to givevarious organocob(III)alamins. [4, 27-29] 

Two general thermodynamic trends for B12-redox systems have been 

established: 

 

i. coordination of axial ligands (DMB-base and/or strongly coordinating 

or nucleophilic ligands) stabilizes the corrin-bound cobalt center 

against one-electron reduction (Co(III)-/Co(II)-redox couples shift to 

more negative potentials). As a consequence, redox-potentials of 

‗base-off‘ cobalamins (as obtained by DMB-base protonation) are less 

negative than those of the corresponding ‗base-on‘ forms.  

ii. one-electron reduction of organometallic Co(III)-corrins requires 

more negative potentials than most Co(II)-/ Co(I)-redox couples. 

 

 

Organometallic Chemistry 
 

Organometallic chemistry is the basis of the cofactor activity of the B12-

coenzymes AdoCbl and MeCbl, which relies on the controlled formation and 

cleavage of their organometallic Co-C bonds. [4, 7, 20] When the Co-C bond 

of organocob(III)alamins is cleaved by homolysis to a radical and 

cob(II)alamin, formally, a one electron reduction of the Co-ion has occurred. 
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Organocob(III)alamins are rapidly formed, in reverse, from combination of  

cob(II)alamin and organic radicals, the ‗homolytic‘ mode of formation of the 

Co-C bond. AdoCbl-dependent enzymes operate by this mode: AdoCbl 

functions as a reversible radical source [30], and cob(II)alamin is a very 

efficient trap of the Ado-radical (see Figure 4). [4] 

 

 

Figure 4. Reversible homolytic cleavage of the Co-C bond of coenzyme B12 (AdoCbl) 

generates a 5´-deoxy-5´-adenosylradical in AdoCbl-dependent enzymatic reactions. 

The homolytic Co-C bond dissociation energy (BDE) of AdoCbl has been 

determined as about 30 kcal/mol. [3, 29, 30] AdoCbl, when dissolved in water, 

has a half-life of 10
10

 sec at room temperature (in the dark). However, at 

higher temperatures, AdoCbl undergoes rapid homolysis of the organometallic 

bond, which furnishes cob(II)alamin. The latter has a structure remarkably 

similar to that of the Co(III)corrin part of AdoCbl. [31] This explains why the 

radicaloid cob(II)alamin is a highly efficient ―radical trap‖ and its radical 

recombination reactions have such remarkably high rates in solution.  

The nucleophile-induced demethylation of methylcobalamin (MeCbl) 

furnishes cob(I)alamin, which may, in turn, react with methylating agents to 

give MeCbl. This heterolytic mode of cleavage or formation of the Co-C bond  

is, formally, a two electron reduction or oxidation process. Alkylations at the 

‗supernucleophilic‘ Co(I) center normally proceed via a bimolecular 

nucleophilic substitution (SN2) in which cob(I)alamin preferentially reacts at 

its β-side (Figure 5). The immediate product of the β-alkylation is likely to be 

a ‗base-off‘ Coβ-alkyl-Co(III)-corrin. In aqueous solution, the ‗base-on‘ form 

of MeCbl is more stable by about 4 kcal/mol than ‗base-off‘ Coα-aquo-Coβ-

methyl-cobalamin. [24] Thus, methylation by the SN2-mode takes place in a 

two-step mechanism (Figure 5). [4]  
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Alkylation of Co(I)-corrins is a general method to prepare organometallic 

B12-derivatives. Co(I)-corrins are generated via chemical [4] or 

electrochemical reduction. [20] The electrochemical method is specifically 

useful for the synthesis of complex organometallic B12-derivaties, such as, 

e.g., recently prepared DNA-B12-conjugates. [28] In certain cases, alkylation 

of Co(I)-corrins occurs via an alternative two-step one-electron transfer path 

where Co(I)-corrins act as strong reducing agents and the reaction proceeds 

via Co(II)-corrin intermediates. [4, 9] Alternatively, MeCbl has also been 

prepared from cob(II)alamin with methyl iodide in a radical alkylation 

process. [32] 

 

 

Figure 5. Nucleophile-induced formation and heterolytic cleavage of the Co-C bond of 

the cofactor methylcobalamin (MeCbl).  

 

 

HUMAN B12-DEPENDENT ENZYMES 
 

Three major classes of B12-dependent enzymes are known: AdoCbl-

dependent enzymes, [33] methyltransferases, [34] and corrinoid 

dehalogenases. [35] In human metabolism, only two B12-dependent enzymes 

play a role, namely methionine-synthase (hMS) and methylmalonyl-CoA 

mutase (MCM) (Figure 6). 
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Figure 6. Transformations catalyzed by methionine synthase (top) and by methyl-

malonyl-CoA mutase (bottom). 

 

Methionine-Synthase 
 

B12-dependent methionine-synthase is the only methyl transferase in 

humans and animals. [36] This enzyme uses MeCbl as cofactor and catalyzes 

the methylation of homocysteine to methionine. Human methionine-synthase 

(hMS) (E.C. 2.1.1.13) is essential for the amino acid metabolism and is 

encoded by the cblG locus. [37] hMS is a monomeric protein of ~140 kDa 

located in the cytoplasm. It shares 55% identity in deduced amino acid 

sequence with MetH from E. coli and appears to have a similar modular 

structure as its bacterial counterpart. [34, 38] A closely related catalytic 

mechanism is considered for the two methyl transferases, which involves two 

SN2-type half-reactions (Figure 7). [36] First, the methyl group of MeCbl is  

abstracted by homocysteine to give methionine and cob(I)alamin. Second, the 

strongly nucleophilic cob(I)alamin removes the methyl group from N
5
-

methyltetrahydrofolate to give tetrahydrofolate and to re-generate MeCbl. In 

MetH, the two methyl-transfer reactions occur in a rapid sequence with kcat of 

27 sec
-1

. [34] Oxidation of bound cob(I)alamin to inactive cob(II)alamin 

occurs occasionally. In humans, this is repaired by the hMS-reductase module 

via reductive methylation. [4, 38]  

Surprisingly, as discovered by X-ray crystallography, MeCbl is bound in 

MetH in a ‗base-off/His-on‘-constitution in which the DMB-base is replaced 

by a protein-derived histidine. [39] Observation of this type of Cbl-structure 

was puzzling. Structure-based rationalization of the observed displacement of 
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the DMB-base by histidine has been a pertinent topic. However, methyl-

corrinoids lacking a nucleotide base are demethylated by thiolates 

approximately 1000 times faster than MeCbl, which demonstrates the 

stabilizing effect of the coordinated nucleotide base. [4, 24] Such axial base 

effects are expected to be relevant for methyl-transfer reactions catalyzed by 

Cbl-dependent methyl transferases. [4, 11] 

 

 

Figure 7. Methionine-synthase (MetH) catalyzes the B12-dependent formation of 

methionine (top, right) from homocysteine (top, left) and demethylation of N
5
-

methyltetrahydrofolate (bottom, right) to tetrahydrofolate (bottom, left). The protein-

bound Cbl mediates methyl group transfer by shuttling between ‗base-off/His-on‘ 

MeCbl and cob(I)alamin. 

 

In the well-studied MetH four (nearly independently functioning) modules 

bind (beginning at the N-terminus) homocysteine, N
5
-methyltetrahydrofolate, 

the B12-cofactor MeCbl and S-adenosylmethinoine (SAM). The B12-cofactor is  

bound to the B12-binding domain, which provides both an anchoring site for 

the nucleotide tail, as well as the crucial cobalt-ligating histidine residue of the 

―His-Asp-Ser-triad‖, as part of the conserved B12-binding sequence (Gly-X-X-

His-X-Asp). [11, 39, 40] The catalytic turnover is accompanied by significant 

structural changes of the B12-cofactor as well by controlled domain shuttling 

of the protein. Indeed, the B12-binding domain needs to interact sequentially 
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with each of the three other domains to achieve the overall ‗job‘ of the methyl 

transfer reaction. 

 

 

Methylmalonyl-CoA-Mutase 
 

Enzymes using coenzyme B12 (AdoCbl) as cofactor catalyze metabolically 

important radical reactions by carrying out ‗difficult chemistry‘. [41] The 

coenzyme B12-dependent enzymes are subdivided into three families: carbon 

skeleton mutases (e.g. methylmalonyl-CoA mutase (MCM)), B12-dependent 

isomerases (e.g. diol dehydratases and amino mutases) and B12-dependent 

ribonucleotide reductase. [7, 9, 33, 41] 

 

 

Figure 8. Coenzyme B12-dependent methylmalonyl-CoA-mutase. Mechanism of the 

1,2-isomerisation of (2R)-methylmalonyl-CoA to succinyl-CoA. This carbon skeleton 

rearrangement involves H-atom abstraction, radical rearrangement and back transfer of 

a H-atom. The protein-bound cofactor AdoCbl serves as a reversible source of the 5'-

deoxy-5'-adenosyl radical and of cob(II)alamin (see Figure 4). 

 

In human metabolism, only the carbon skeleton mutase methylmalonyl-

CoA mutase (hMCM) is indispensable. [33] hMCM (EC 5.4.99.2) is a ~ 200 

kDa protein located in the mitochondria. [42] As a part of the catabolic 
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pathway of uneven-numbered and branched chain fatty acids,[15, 43, 44] 

hMCM catalyzes the isomerisation of (2R)-methylmalonyl-CoA to succinyl-

CoA (Figures 6 and 8). ‗Base-off/His-on‘ binding of AdoCbl involving the 

―triad‖ His-Aps-Lys was discovered by X-ray analysis of MCM from 

Propionibacterium shermanii (pMCM). [13] pMCM, as well as hMCM, bind 

AdoCbl at the interface of the B12- and substrate-binding domains. [42, 45]  

Rapid formation of the radicaloid cob(II)alamin by homolytic Co-C bond 

cleavage of bound AdoCbl only occurs when substrate binds the pMCM-

holoenyzme. [46] The resulting enzyme-bound Ado-radical abstracts a H-atom 

from the methyl group of (R)-methylmalonyl-CoA to give the 2-methylmalon-

2‘-yl-CoA radical, which undergoes (an intramolecular) rearrangement to a 

succin-3‘-yl-CoA radical (Figure 8). The latter radical then abstracts an H-

atom from 5‘-deoxyadenosine to give succinyl-CoA and an Ado-radical, 

which recombines with cob(II)alamin to regenerate AdoCbl. The selective H-

atom abstractions and the radical rearrangement are highly stereoselective and 

are tightly controlled by the protein environment in the active site. [46, 47] 

The crystal structure [42] revealed the major protein contributors that interact 

via H-bonds with the substrate and may help displace the Ado-ligand of the 

bound AdoCbl-cofactor. 

 

 

COBALAMIN PROCESSING ENZYMES 

 

Cobalamin-β-Deligase 
 

After arriving in the cytosol, cob(III)alamins carrying various upper axial 

()-ligands are -deligated to cob(II)alamin, the ‗obligate‘ intermediate for the 

synthesis of MeCbl and AdoCbl. Malfunction of the crucial Cbl-β-deligase has 

been shown to be a cause of MMACHC (methylmalonic aciduria type C and 

homocystinuria). Cbl-β-deligase has been identified as the product of the cblC 

locus, and is, thus, commonly named CblC. [48] Mutations in Cbl-β-deligase 

(CblC) impair both human B12-dependent enzymes and result in general 

‗functional B12-deficiency‘. [16] 

Cobalamin-β-deligase (CblC) cleaves Co-C bonds of alkylcobalamins 

(such as MeCbl) as well as of CNCbl. (Figure 9) When MeCbl is bound, CblC 

catalyzes a nucleophilic displacement reaction in the presence of glutathione 

(Figure 9). Mechanistically, the dealkylation by (human) CblC resembles the 

first half-reaction catalyzed by hMS. [49] The resulting cob(I)alamin is 

subsequently oxidized to cob(II)alamin. CblC also catalyzes the reductive 
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decyanation of CNCbl in the presence of FMN or FAD and NADPH to give 

cob(II)alamin, as well. (Figure 9) [50] 

 

 

Figure 9. Mechanism of cobalamin-β-deligase (CblC). Cob(II)alamin is formed either 

by reductive decyanation of CNCbl or by nucleophile substitution of alkylcobalamins, 

followed by oxidation of the resulting cob(I)alamin. Cob(II)alamin is subsequently 

handed over to MetH, to be converted into MeCbl, or to adenosylcobalamin-synthase 

(ACA) giving AdoCbl (GthSH: glutathione; L: tentative ligand). 

 

According to X-ray analysis, Cbls are bound to CblC in a large cavity at 

the domain interface in a five-coordinate, activated ‗base-off‘ form. The Cbl-

nucleotide moiety of MeCbl bound to CblC is bound in a pocket dominated by 

hydrophobic interactions [51] resulting in ‗base-off‘ MeCbl.  

 

 

Adenosylcobalamin--Ligase  
 

Coenzyme B12 (AdoCbl) is enzymatically produced in human 

mitochondria by the ATP-dependent adenosylcobalamin--ligase (ATP: 

cob(I)alamin-adenosyltransferase, ACA, EC 2.5.1.6, formerly EC 2.4.2.13) 

encoded by the cblB locus. [52] Human ACA (hACA) is a bifunctional 

enzyme that not only forms AdoCbl via nucleophilic substitution (SN2) but 

also transfers ‗base-off‘ AdoCbl subsequently to the Ado-depedent enzyme 

hMCM (Figure 10). [53] 
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Cob(II)alamin is bound to hACA in a four-coordinate ‗base-off‘ state [52, 

53] facilitating reduction to cob(I)alamin by decreasing the redox potential 

significantly. [27] A crystal structure analysis of LrPduO (PduO-type 

adenosyltransferase from Lactobacillus reuteri) revealed an ATP molecule 

located above the cob(I)alamin β-side. The substrate orientation favors 

nucleophilic attack of the protein-bound cob(I)alamin at the 5´-carbon of ATP 

generating five-coordinate ‗base-off‘ AdoCbl. [54] A chaperone-type delivery 

of AdoCbl by ACA to MCM has been proposed. [53]  

 

 

Figure 10. Mechanistic scheme of adenosylcobalamin--ligase (ACA). Cob(II)alamin 

is bound four coordinate ‗base-off‘, thereby facilitating reduction to the highly 

nucleophilic cob(I)alamin, which attacks the 5´-carbon of ATP forming AdoCbl. 
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ABSTRACT 
 

Mammals are incapable of synthesizing vitamin B12 (cobalamin 

(Cbl)). Instead, they have a complex multi-step pathway for specific and 

efficient transport of this essential vitamin from its food source to the 

target body cells. Dysfunction in any of the transport steps may lead to 

Cbl deficiency.  
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INTRODUCTION 
 

The transport of Cbl from its food source to reach the body cells is 

mediated by a sophisticated set of carrier, receptor and transporter proteins [1]. 

The selective multi-step pathway of Cbl transport includes the liberation of 
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Cbl from its matrix in the ingested food, gastrointestinal transport, absorption 

to reach the blood circulation, transport through the circulation, and cellular 

uptake from the circulation. These sequential steps of the transport process can 

be followed by tracking the Cbl content of the ingested food through the 

locations it passes by, starting from mouth to stomach, small intestine, ileum 

enterocyte, blood circulation until it reaches the target cells in different organs. 

 

 

The Digestive Tract 
 

Different food types have varied Cbl content. Cbl is absent from plant-

source food but present in different amounts in meat based food (see chapter 

―Food source of vitamin B12‖). Cbl is mainly protein bound in its food source. 

The encapsulating matrix of Cbl affects its bioavailability as the vitamin has to 

be liberated from its matrix to become accessible to the transport mechanism 

[2, 3]. The efficient active Cbl absorption process guarantees uptake of minute 

amounts, but still passive diffusion of Cbl happens along the entire 

gastrointestinal tract (∼1% of the ingested dose). This passive absorption is 

relevant upon using high Cbl oral-doses for deficiency treatment [4]. 

 

1) Mouth 

The absorption of Cbl is negligible or does not exist under physiological 

conditions in the mouth, but its obvious role in chewing make food more 

accessible to the stomach acidity and enzymes‘ proteolytic activity, which 

both play a major role in liberating the Cbl from its food matrix. The mouth 

salivary glands secrete haptocorrin (HC) to saliva (about 50 nM) [5]. HC, a 

glycoprotein that binds Cbl and its non-coenzyme analogues, so it‘s not 

specific for Cbl. The Cbl-HC binding is unlikely to happen in the mouth, since 

the Cbl is not yet released from the food components. HC of salivary origin 

proceeds to the stomach, where some amount of gastric HC is also 

produced [6]. 

 

2) Stomach 

Stomach acidity with the help of proteolytic activity of pepsin liberate 

encapsulated food Cbl. The released Cbl subsequently binds HC [7]. This 

binding protects the vitamin from chemical modification or acid hydrolysis in 

the stomach [8, 9]. Gastric dysfunction and diminished acid secretion (gastric 

atrophy, gastric surgery or treatment with acid suppressing drugs) may lead to 

Cbl malabsorption [10].  
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Parietal cells of the gastric mucosa secrete the intrinsic factor (IF), a Cbl-

binding carrier. IF is a 60 kDa heavily glycosylated protein found mainly in 

the gastric juice and ileal fluid of mammals [11]. Despite high excess of 

gastric IF (about 50 nM) [7-9] almost no binding occur in the stomach to Cbl 

as the interaction is pH sensitive [7, 12]. In contrast to HC, IF is specific for 

Cbl and does not bind Cbl analogues therefore sorting out Cbl-analogues from 

the transport mechanism [7, 13]. IF function is essential for Cbl absorption as 

will be described below. 

 

3) Lumen of the Small Intestine 

Upon reaching the duodenum, the HC-Cbl complex is degraded by 

pancreatic proteases and the liberated Cbl bind to IF [7, 12]. HC is sensitive to 

proteolytic activity of trypsin, chymotrypsin and elastase, while IF is less 

sensitive to these intestinal enzymes, especially in its Cbl-bound form [7]. 

Thus, the different susceptibility of IF and HC to luminal proteolysis explain 

the transfer of Cbl from HC to IF. Reduced pancreatic enzyme secretion (of 

80-90% as in some cases of chronic pancreatitis) leads to impaired degradation 

of HC-Cbl and the trapped Cbl become inaccessible to IF [14]. Deficiency of 

IF as in the case of Pernicious anemia (autoimmune attack on the parietal 

cells) or Hereditary IF Deficiency (IFD) (rare inborn errors of synthesis) leads 

to Cbl deficiency [15]. IF deficiency is corrected by exogenous-IF feeding 

[16]. 

 

4) Ileum Enterocytes 

 

a) Entrance of Cbl 
In the distal ileum, the Cbl-IF complex (IF-Cbl) complex is recognized by 

the receptor cubam on the apical plasma membrane of the enterocyte [17]. 

Once bound, the IF-Cbl complex is taken up by receptor mediated endocytosis 

[18]. Cubam recognizes IF-Cbl but not the Cbl-unsaturated IF nor the free Cbl 

[17, 19]. 

Cubam is a protein complex between the 400 kDa cubilin receptor and the 

48 kDa amnionless protein [20]. Cubilin is a peripheral membrane protein that 

binds IF-Cbl while amnionless is a transmembrane, endocytic protein [19, 21]. 

Cubilin depends on amnionless for its endocytic internalization [22]. Without 

amnionless, cubilin is detached from the membranes, whereupon the cell loses 

the ability to absorb IF-Cbl [23]. 

The physiological importance of the cubam for Cbl absorption is obvious 

in patients suffering from Imerslund-Gräsbeck syndrome (IGS), a rare Cbl 
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absorption disorder caused by defects of cubam [24, 25]. IGS patients carry 

mutations in cubilin or/and amnionless [26, 27]. 

 

b) Transport within the Enterocyte 
Upon cubam-mediated internalization to endosomes, IF-Cbl is liberated 

from cubam and transferred to lysosomes. Cubam, on the other hand, recycled 

to the cell surface. In the lysosome IF is degraded by the actions of lysosomal 

protease (most likely by cathepsin L) [28] and the Cbl is released. Inhibitors of 

lysosomal function block secretion of Cbl from cultured cells [29]. Released 

Cbl exit from lysosome to reach the cytoplasm, a process that probably 

involves the proteins LMBD1 and ABCD4. LMBD1 is a 61 kDa lipocalin 

receptor-like, lysosomal membrane protein while the ABCD4 is an ATP 

binding cassette (ABC) transporter [30]. Mutations in the genes encoding 

LMBD1 or ABCD4 are responsible for the rare inborn defects named cblF and 

cblJ respectively, both have similar phenotypes and clinical symptoms (For 

more details see chapter ―Causes of vitamin B12 deficiency‖). Defects in 

LMBD1 or ABCD4 resulting in trapping of free Cbl in enterocytes‘ lysosomes 

and therefore Cbl fail to reach the blood stream [30-32]. The mechanism of 

LMBD1 and ABCD4 contribution in the intracellular transport of Cbl is 

currently unclear. However, it was proposed that the translocation mediated by 

LMBD1 and regulated by ABCD4. Cbl transport after the lysosomal exit until 

its export from the cell is still unknown. Recent studies indicate that Cbl exit 

from the lysosome is bound by cobalamin-ß-deligase (CblC) protein in the 

cytosole, which is involved in decyanation of cyano-Cbl and dealkylation of 

alkyl-Cbl [33-35] then probably passed on to the cytosolic CblD protein [36] 

which plays a role in Cbl traffic to apomethylmalonyl-CoA mutase in the 

mitochondrion and apo-methionine synthase in the cytosol. 

 

c) Exit from the Enterocyte 
Cbl that exit in its free form (unbound to proteins) from the ileal 

enterocytes is exported by the basolateral multiple drug resistance protein 1 

(MRP1) to reach the bloodstream [37]. MRP1 is a 190 kDa ATP-binding 

cassette transporter protein. MRP1-lacking mice have increased Cbl levels in 

the ileum, implying a physiological function of MRP1 in Cbl transport out of 

the enterocytes. However, the efflux of Cbl is only partially inhibited in these 

mice. This observation supports the existence of an alternative Cbl export 

mechanism that might exist with redundant activities to MRP1 [37].  
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Circulation 
 

Upon the exit of Cbl from the enterocyte to the bloodstream, Cbl binds 

mostly to transcobalamin (TC) [38] though HC also exists in comparable 

concentration to TC. This is because of the high concentration of unsaturated 

TC in plasma compared to the concentration of unsaturated HC [39, 40]. TC is 

a non-glycosylated protein that has an essential role in transporting Cbl 

through blood circulation and from circulation to inside the body cells [41, 

42]. Most tissues synthesize TC, which reaches the bloodstream by internal 

secretion [43, 44]. The TC importance is clear in children with an inborn 

defect of TC synthesis (absence or inactive TC) [45] (For more details see 

chapter ―Causes of vitamin B12 deficiency‖). The affected child develops 

severe Cbl deficiency within months of birth. 

TC-Cbl (holoTC) is available for uptake by body cells. The main targets 

for the plasma holoTC are the liver [39] and the kidney [46]. Cbl bound to HC 

can be taken up by hepatocytes via the asialoglycoprotein receptor, but is 

unavailable to other cells. The physiological relevance of HC and its uptake 

are unknown [47, 48]. In humans HC is present in saliva, breast milk and 

plasma along with other body fluids [49]. 

 

 

From Circulation to Cells 
 

TC-Cbl complexes enter the body cells by CD320 receptor-mediated 

endocytosis. CD320 is a 58 kDa heavily glycosylated endocytic LDL receptor, 

expressed virtually in all tissues [50]. Upon endocytosis, TC is degraded to 

liberate Cbl in the lysosome [51, 52] probably in the same way as described 

above for enterocytes. In support of its role in Cbl uptake, newborn with a 

deletion mutation in the CD320 gene affecting the LDL receptor domain 

causes a decrease in TC-Cbl binding and uptake by cells, though it is not clear 

that this disorder has any clinical phenotypes [53].  

 

 

Cbl Recycling 
 

The minute amount of Cbl absorbed are retained in the body, both through 

reabsorption in the kidney and through the enterohepatic circulation, therefore 

deficiency needs years of insufficient dietary intake to happen if the uptake 
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system is intact. The secreted Cbl in bile is reabsorbed via the IF-dependent 

manner. 

TC-Cbl are prone to glomerular filtration because of the relatively small 

size, 46 kDa with 2.5 nm radius [44]. The filtered TC-Cbl complex is 

reabsorbed by the high affinity receptor megalin, thereby preventing urinary 

loss and mediates the vitamin return to the blood circulation. Megalin is a 600 

kDa LDL receptor located in the apical membrane of proximal tubule cells 

[54, 55]. Upon megalin receptor mediated endocytosis, the liberated Cbl from 

TC reaches and accumulates in lysosomes of the kidney (indicating a storage 

function for this organelle) [56]. The exit mechanism of Cbl through the 

basolateral membrane of renal tubule to return to bloodstream is still unknown. 

 

 

CONCLUSION 
 

The discovery of genes and proteins involved in Cbl transport over the last 

50 years make it possible to describe the pathway of Cbl transport from food 

to the body's cells. This knowledge helps in the diagnosis and treatment of Cbl 

deficiency caused by a defect in the transport mechanism. Contrasting the 

detailed gastrointestinal transport information mentioned in this book, much is 

still to be learned about Cbl transport in other organs and transport to and 

within the central nervous system (CNS), fetal-maternal Cbl transport in the 

placenta, as well as transport from the lactating mammary gland into milk. 

Also, the role of HC and the soluble form of CD320 receptor that present in 

many body fluids are not clarified, [57] and it‘s not clear the role of TC-Cbl 

and HC-Cbl in Cbl absorption as these found to be taken up to some degree by 

ileal enterocytes [48, 58]. 
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ABSTRACT 
 

Microorganisms have developed two distinct biosynthetic pathways 

to synthesize vitamin B12, nature's most 'beautiful' cofactor. Both routes 

require more than 30 enzymatic steps to complete vitamin B12 

biosynthesis. Although artificial total synthesis of vitamin B12 has been 

found to be challenging, significant interest remains on the synthesis of 

vitamin B12 derivatives with medical applications. 

Remarkably, structurally analogue ‗complete‘ corrinoids distinguish-

able from cobalamins by their different lower ligands are found in 

archaea and bacteria. Although humans only require cobalamins as 

cofactors for methylmalonyl-CoA mutase (MCM) and methionine 

synthase (MS) other members of the ‗corrinoid family‘ have an indirect 
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influence on human health as well as ecosystem function as they are 

mandatory for several bacteria in microbial communities. 

Here we discuss the biosynthesis of B12, the chemical synthesis of 

B12 and the B12-analogues, as well as the structural differences, the 

distribution in nature and the biological relevance of natural analogues of 

cobalamins, and finally nomenclature. 

 

Keywords: ‗complete‘ corrinoids, B12-analogues, biosynthesis, chemical 

synthesis, B12-nomenclature 

 

 

INTRODUCTION 
 

The majority of prokaryotes, animals and humans depend on corrinoids, a 

family of molecules that includes cobalamin (5,6-dimethylbenzimidazolyl 

cobamide, Cbl). Only a minority of archaea and bacteria can synthesize 

corrinoids de novo. The elucidation of the biosynthetic pathway to cobalamin 

took several years and is still in progress. All pigments of life (e.g. 

chlorophyll, heme and vitamin B12) share the same pathway in their early stage 

of biosynthesis. The starting material is δ-aminolevulinic acid (δ-ALA), which 

is converted into the first cyclic intermediate uroporphyrinogen III (uro‘gen 

III) by three enzymatic steps. Uro'gen III represents a branch point in the 

biosynthesis of all pigments of life. At the next biosynthetic intermediate 

precorrin 2, the pathway divides into an aerobic and an anaerobic branch. The 

branches converge in the final stages of the biosynthesis.  

When the crystal structure of vitamin B12 was solved, chemists focused on 

its chemical synthesis. This challenging task was completed by Eschenmoser 

and Woodward in the 1970‘s. Despite the complex structure, the chemistry of 

vitamin B12 has been studied for many years, which led to the development of 

synthetic methods to introduce modifications in the vitamin B12 molecule.  

Corrinoids are structurally complex essential cofactors (Figure 1) for 

fundamental processes such as the biosynthesis of amino acids and catabolism 

of branched carbon chains in humans and additionally DNA synthesis, 

fermentation of diverse carbon sources and anaerobic respiration in bacteria. 

Several structurally distinct corrinoids with variation in the base of the 

nucleotide moiety have been reported so far, although the significance of this 

diversity is still unclear.  
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Figure 1. Schematic structures of the three classes of ‗complete‘ corrinoids with the 

most abundant lower ligands, L: upper ligand (e.g. Ado, methyl, hydroxo, cyano). 

 

BIOSYNTHESIS OF B12 
 

From δ-Aminolevulinic Acid to Uroporphyrinogen III 
 

There are two different pathways for the biosynthesis of δ-ALA (Figure 

2). In the Shemin pathway [1], found in non-photosynthetic eukaryotes and 

some bacteria, glycine and succinyl CoA are condensed to δ-ALA by 

aminolevulinic acid synthase (ALAS) [2]. In plants and most bacteria, δ-ALA 

is produced from glutamic acid in the so-called C5-pathway [3-4]. 

In the next step two δ-ALA molecules are condensed to the pyrrolic 

intermediate porphobilinogen (PBG) [5]. The enzyme responsible for the 

transformation is porphobilinogen synthase (PBGS). Subsequently, four PBG 

molecules are polymerized into the linear tetrapyrrolehydroxymethylbilane by 

the enzyme PBG deaminase (PBGD) [6]. The cyclization of hydro-

xymethylbilane to uro'gen III is carried out by uroporphyrinogen synthase 
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(UROS) [6]. UROS catalyzes not only the cyclization, but also the inversion of 

the fourth pyrrole ring to form uro'gen III [7]. 

The cobalamin biosynthesis is continued with two methylations at C2 and 

C7 to give precorrin 2. The reaction is catalyzed by Cob A, which uses S-

adenosylmethionine (SAM) as a methylating agent [8-9]. The B12 biosynthetic 

pathway diverges at this point, depending on the presence or absence of 

oxygen. In aerobic microorganisms the cobalt insertion is carried out at a later 

stage, whereas in anaerobes cobalt is introduced at the beginning of the 

biosynthetic pathway (Figure 2). 

 

 

The Aerobic Pathway 
 

The first step in the oxygen-dependent biosynthesis of B12 is the addition 

of a methyl group at C20 in precorrin 2, catalyzed by Cob I and using SAM as 

cofactor (Figure 3) [10-11]. The methylation at C20 seems somewhat 

surprising, as this carbon is absent from the structure of vitamin B12. Precorrin 

3A is then hydroxylated at the new methyl group at C20 using molecular 

oxygen O2, followed by lactonization of the a-side chain. This reaction is 

either catalyzed by Cob G or Cob Z, depending on the organism [12-13]. 

Precorrin 3B is now ready for the crucial step of ring contraction. The 

methylation and hydroxylation at C20 have generated a spring-load that 

enables the molecule to undergo ring contraction [12]. In the biosynthesis this 

reaction is carried out by Cob J. The product precorrin 4 not only has a 

contracted ring but also bears a methyl group at C17 (derived from SAM) [12, 

14]. Precorrin 4 is further methylated at C11 catalyzed by Cob M to form 

precorrin 5, [12, 15] followed by replacement of the acetate group at C1 by a 

methyl group catalyzed by Cob F [12]. The resulting precorrin 6A is reduced 

to precorrin 6B by the NADPH-dependent enzyme Cob K at the double bond 

between C18 and C19 [16]. Next two methyl groups are introduced at C5 and 

C15, and the carboxylate side chain at C12 is reduced to a methyl group. 

These three reactions are all carried out by the multifunctional enzyme Cob L, 

to obtain precorrin 8 [17]. To complete the corrin ring synthesis, the methyl 

group at C11 must migrate to C12, forming hydrogenobyrinic acid (HBA) 

[18]. This step is catalyzed by Cob H, and the transfer of the methyl group also 

changes the conjugated -system, resulting in a color change from yellow to 

pink. The acetate side chains a and c in HBA are then converted into 

acetamide groups by Cob B using glutamine as the nitrogen donor [19]. In the 

next step the cobalt(II) ion is inserted into HBA-a,c-diamide, giving 
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cob(II)yrinic acid-a,c-diamide. This challenging step of cobalt insertion into a 

ring-contracted tetrapyrrole is catalyzed by a cobalt chelatase, a large protein 

complex consisting of Cob N, Cob S and Cob T. This complex also requires 

Co(II) and Mg(II)-adenosine-5‘-triphosphate(ATP). Cob N binds HBA-a,c-

diamide and Co(II), whereas Cob S and Cob T form a chaperon-like complex 

and are predicted to bind Mg(II)-ATP [20]. 

 

 

Figure 2. Biosynthesis of Uro'gen III. 

The upper axial ligand is attached to the cobalt ion via a bimolecular 

nucleophilic substitution (SN2) reaction, which requires cobalt(I), a highly 

nucleophilic species and also a strong reductant. This one electron reduction is 

performed by the NADPH-dependent cobalt reductase Cob R which uses 

flavine mononucleotide (FMN) as the electron donor.  

The axial ligand 5'-deoxyadenosin is derived from ATP and attached to 

cobyrinic acid-a,c- diamide via nucleophilic attack by the Co(I) center on the 

5' carbon of the ribose moiety in ATP, [19, 21] giving adenosyl cob(III)yrinic 

acid ac diamide. The reaction is catalyzed by Cob O. In the final step before 

attachment of the lower axial ligand, the remaining carboxy groups (except the 

f-side chain) are converted into amides by cobyric acid synthase (Cob Q) [22]. 
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The Anaerobic Pathway 
 

The main difference between the aerobic and the anaerobic pathways are 

the timing of the cobalt insertion and ring contraction. In the anaerobic 

pathway, cobalt insertion occurs at an early stage (Figure 4). Precorrin 2 is 

oxidized to factor II by an NAD
+
-dependent reductase (CysG), which also 

catalyzes the addition of two methyl groups to uro'gen III [23-24]. 

Interestingly, CysG also function as a ferrochelatase in the formation of 

siroheme from precorrin 2 [25]. It has been shown that in B12 biosynthesis, the 

metal insertions are carried out by distinct cobalt chelatases. In 

Bacillusmegaterium CbiX is responsible for the cobalt insertion, [26] whereas 

in Salmonellaenterica the metalation is catalyzed by CbiK [27]. 

Cobalt-factor II is then methylated at C20 by CbiL in a SAM-dependent 

reaction, [28] analogous to the aerobic pathway. The resulting cobalt factor III 

is then further methylated at C17 and the macrocycle is contracted by CbiH. 

This enzyme forms a δ-lactone between the a-acetate side chain and C20 

which subsequently results in contraction to the corrin ring [29]. Cobalt-

precorrin 4 is methylated at C11 by the SAM-dependent enzyme CbiF to 

cobalt-precorrin 5A, which still contains the δ-lactone [30]. The next enzyme, 

CbiG opens the δ-lactone and releases acetaldehyde, thereby generating a 

unique double bond between C1 and C19 [31]. Precorrin 5B is then 

methylated by CbiD at C1 [32]. In this reaction, the methylation is facilitated 

by the cobalt(II)ion, which acts like a Lewis base and activates C1 [33]. The 

resulting double bond between C18 and C19 in cobalt-precorrin 6A is reduced 

by the NAD-dependent enzyme CbiJ. Subsequently, cobalt-precorrin 6B is 

methylated at C15 and the acetate group at C12 is replaced by a methyl group 

(CbiT), followed by addition of a methyl group to cobalt-precorrin 7 at C5 by 

CbiE. Both enzymes use SAM as the methyl donor. The final reaction to 

cobyrinic acid involves the 1,5 sigmatropic rearrangement of the methyl group 

at C11 to C12, catalyzed by CbiC [33]. Finally, amide groups are introduced 

by the ATP-dependent CbiA, which catalyzes the amidation of the a- and c-

side chains using glutamine as the nitrogen donor [34]. The additional four 

amidations are catalyzed by CbiP in an ATP dependent manner to obtain 

cob(II)yric acid [35]. Although the cobyric acid has to be adenosylated at the 

cobalt ion for the final nucleotide attachment, nothing is known about the 

timing of the Cob A catalyzed reaction [36]. 

 

 

 



 

 

Figure 3. Aerobic biosynthetic pathway (A = acetate side chain, P = propionate side chain). 



 

 

Figure 4. Anaerobic B12 biosynthetic pathway from uro‘gen III to adenosylcobyric acid (A = acetate side chain, P = propionate acid side 

chain). 



 

 

Figure 5. Final stages in the biosynthesis of coenzyme B12. 



 

 

Figure 6. The two total synthetic routes leading to cobyric acid: top A/B route; bottom A/D route. 

 

 

 

 



B12-Biosynthesis, Natural Cobalamin Analogues … 41 

Nucleotide Loop Attachment 
 

The formation of adenosylcobinamide phosphate requires the attachment 

of an L-threonine derived [37] aminopropanol-O-2-phosphate moiety to the 

propionic acid side-chain of ring D of adenosylcobyric acid (Figure 5) [38-39]. 

This attachment is catalyzed by a multienzyme complex (Cob C, Cob D and 

Protein ) and requires Mg
2+

 and ATP [38]. The assembly of the lower 

nucleotide loop which is the last step in the biosynthetic pathway can be 

considered to occur in three steps. These involve the activation of the 

cobinamide phosphate, the synthesis and activation of the -nucleotide and 

finally their attachment. The activated cobamide form adenosyl-GDP-

cobinamide is synthesized via attachment of guanosine monophosphate either 

by Cob P [21, 40] in aerobes or by Cob U [41-42] in anaerobes.  

In the case of cobalamin the lower ligand attached to the activated 

cobinamide species is 5,6-dimethylbenzimidazol (DMB). Two pathways that 

produce DMB are known. The substrate of the oxygen-dependent pathway is 

FMN which is ‗cannibalized‘ by BluB to synthesize DMB [43-45]. Isotopic 

labelling studies in the anaerobic bacterium Eubacteriumlimosum showed that 

DMB is constructed from erythrose 4-phosphate, formate, glutamine, glycine 

and methionine [46]. Recently, a gene cluster associated with the anaerobic 

biosynthesis of DMB was found and the functions of the biosynthetic genes 

were elucidated [47]. The origin of purine bases for corrinoid biosynthesis is 

still unknown. It is assumed that the basic nucleotides adenine, guanine and 

hypoxanthine are formed in the purine biosynthesis pathway. As cobamides 

contain -glycosidic nucleotides the bases may result from salvaging of 

degraded tRNA [48]. In Sporomusa ovata, p-cresol is derived from tyrosine 

[49]. To date, nothing is known about the source of phenol in 

phenolylcobamide. Some speculate that it is formed from p-cresol [50]. The 

activated -nucleotide is synthesized by the phosphoribosyltransferase Cob U 

[51] or Cob T [52], which transfers the phosphoribosyl moiety of nicotinate 

mononucleotide onto the base (e.g. benzimidazoles, purines and phenolic 

compounds). It has been shown that corrinoids structure depends on both 

lower ligand availability and phosphoribosyltransferase substrate specificity 

[53-54]. 

Finally the activated -riboside phosphate is attached to adenosyl-GDP-

cobinamide by a so-called cobalamin synthase Cob V [51] or Cob S [55]. 

Additionally it was shown for adenosyl-cobalamin (coenzyme B12, AdoCbl) 

biosynthesis that a phosphatase Cob C is involved in either cleavage of the 
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phosphate from the -riboside phosphate substrate before attachment to the 

activated cobinamide or from the adenosyl cobalamin-5‘-phospate product to 

generate AdoCbl [21, 56]. 

 

 

NATURAL COBALAMIN ANALOGUES 
 

Chemical and Structural Aspects 
 

‗Complete‘ corrinoids can be categorized into three classes: 

benzimidazoles, purines, and phenolic compounds (Figure 1). Benzimidazoles 

such as in vitamin B12 (cyanocobalamin) and purines such as in pseudovitamin 

B12 (ΨCNCbl) are linked -N-glycosidically to the C1 atom of the ribose 

moiety. In the case of phenolic compounds such as p-cresolylcobamide the C1 

of the ribose moiety is linked -O-glycosidically. These lower nucleotide 

ligands determine the tendency of ‗complete‘ corrinoids to exist in either of 

two constitutional isomers called ‗base-on‘ or ‗base-off‘ (see also Chapter 

―Natural cobalamins - their structure, chemical reactivity and co-enzymatic 

role‖). Benzimidazoles and purines are capable of forming a ‗base-on‘ state by 

a coordination of N3 (benzimidazoles) or N9 (purines) of the imidazole moiety 

of the lower ligand to the cobalt ion of the corrin ring. The ‗-

pseudonucleotides‘ of phenolic compounds lack the ability to coordinate to the 

cobalt ion and are therefore always in a ‗base-off‘ state [57-59]. Cobalamin, as 

an example for benzimidazoles, shows a significant thermodynamic preference 

for the base-on form in neutral aqueous solution at room temperature [58]. 

Their 5,6-dimethylbenzimidazole ligand creates a more stable coordination to 

the cobalt ion of the corrin ring than other lower ligands. In contrast to the 

biologically active form AdoCbl, its natural purine analogues 

pseudocoenzyme B12 and adenosyl-factor A (Co-adenosyl-2-methylade-

ninylcobamide) favour the ‗base-off‘ state in aqueous solution [59]. This can 

be rationalized by the difference in nucleophilicity of the coordinating 

imidazole nitrogens of DMB and purines.  

 

 

Distribution of ‘Complete’ Corrinoids in Nature 
 

To date, 16 distinct ‗complete‘ corrinoids with variation in the base of the 

nucleotide moiety have been described [48] of which the nine shown in Figure 
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1 have been the most commonly detected [57, 60-63]. Cobamides are utilized 

as cofactors by animals, some protists, and the majority of prokaryotes, but are 

synthesized only by a subset of prokaryotic species [64-66]. Strikingly, 

cobamides seem to play no role in the metabolism of plants, insects and fungi 

[66]. A majority of 76% of sequenced bacterial genomes encode corrinoid-

dependent enzymes involved in radical rearrangement, ribonucleotide 

reduction, methyl-transfer and reductive dehalogenation, or many of these 

processes. However, less than half of these prokaryotes possess the full set of 

genes to synthesize corrinoids de novo [65, 67] following either of two related 

though genetically distinct routes requiring a total of at least 30 enzyme-

mediated reactions [68]. In several microbial communities, significant levels 

of several members of the ‗corrinoid family‘ have been detected [60, 69-70]. 

 

 

Biological Relevance of Natural Cobalamin Analogues 
 

Although benzimidazolyl-, purinyl- and phenolylcobamides are formally 

capable of performing biologically relevant radical-mediated carbon skeleton 

rearrangements as well as methyl group transfer via the established 

mechanisms for AdoCbl and methylcobalamin (MeCbl) [71], organisms prefer 

specific corrinoids and therefore restrict uptake and use [72-75]. 

The restrictions may depend on the natural capacity of ‗complete‘ 

corrinoids to switch between the ‗base-on‘ and the ‗base-off‘ forms [76]. This 

capacity is influenced by the lower ligand and changes the properties of the 

specific corrinoids in two ways.  

First, coordination of the lower ligand to the cobalt atom modulates the 

strength of the cobalt bond to the upper ligand. This biologically unique 

cobalt-carbon is the reactive site of the cofactor. Thus, the organometallic 

reactivity and redox chemistry of the cobalt ion are adjusted via lower ligand 

coordination, for the chemical needs of the enzymatic catalysis [77]. 

Second, the ‗complete‘ corrinoid structure, including the nucleotide 

moiety, is critical for selective and tight binding to transport proteins [78-82]. 

For example, human cobamide transport proteins intrinsic factor (IF), 

transcobalamin (TC) and haptocorrin (HC) have greater affinity for cobalamin 

and a many-fold reduced affinity for other corrinoids, indicating molecular 

specificity of transport processes for the binding of ‗complete‘ corrinoids in 

the well-structured ‗base-on‘ form [83-84]. Accordingly, cobalamins are the 

only physiologically active corrinoids in animals and humans. 
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In contrast to the strong selectivity toward cobalamin found in animals 

and humans natural ‗complete‘ corrinoids in archaea and bacteria are diverse 

in their nucleotide moiety [85-87]. To date, three enzyme classes dependent on 

corrinoids can be distinguished namely methyl transferases, coenzyme B12-

utilizing enzymes and corrinoid dehalogenases [88]. Research on all three 

classes has provided evidence that cobalamin analogues are native cofactors 

for these enzymatic reactions [72, 89-93]. In addition corrinoid-dependent 

enzyme homologs (e.g. MCM and MetH) are present in bacteria that require 

[64] and respectively produce [57, 61, 63, 94-95] corrinoids other than 

cobalamin. Unfortunately very fewstudies have been performed comparing 

different ‗complete‘ corrinoids as cofactors for corrinoid-dependent enzymes 

in vitro [79-81]. 

Further experiments in the future may help to elucidate the significance of 

the lower ligand diversity and help explain the restriction in uptake and use of 

corrinoids by B12-dependent prokaryotes. This is highly relevant in microbial 

communities as corrinoids are mandatory for the majority of their members. 

New sequencing methods have made possible the analysis of highly complex 

microbial communities. Metagenomics led to an explosion of microbial 

genome sequence data that can be analyzed for information on the species 

composition and functional properties of diverse microorganisms. Based on 

these methods recent studies have led to a fundamental shift in our 

understanding of microbial communities in ecosystem function [96] and 

human health [97]. The only methods known to date to control the 

composition of a microbial community are antibiotic therapy, which targets 

broads taxonomic groups, or fecal transplantation of gut microbiota, in which 

the entire gut microbiome is replaced [98-99]. Recently, it was proposed that 

modulating corrinoid levels might impact community composition and thereby 

be a powerful tool to manipulate their structure [100]. 

 

 

TOTAL SYNTHESIS OF VITAMIN B12 
 

The total synthesis of vitamin B12 was one of the most challenging tasks in 

natural product synthesis, which led to the development of new synthetic 

strategies and the discovery of new mechanistic models (Woodward Hoffman 

rules [101]). The structure of vitamin B12 (see also chapter ―Natural 

cobalamins - their structure, chemical reactivity and co-enzymatic role‖) 

consists of a highly substituted corrin ring with a central cobalt ion and 

possesses 13 chiral carbon centers, a nightmare for synthetic chemists. Starting 
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in 1960, it took more than 10 years for two research groups at Harvard 

University (R.B. Woodward) and ETH Zürich (A. Eschenmoser) to 

accomplish the synthesis of cobyric acid, a natural precursor of vitamin B12, 

with more than 70 steps [102-103]. Two routes to the natural product were 

developed, which differ in their strategy for linking rings A and D (Figure 6). 

In the so-called A/B route, rings A and D were first connected together, 

followed by a stepwise connection with the dipyrromethan compound 

containing ring B and C via a sulfide contraction method. In the second 

synthetic route, ring D was connected to the B/C fragment, followed by 

addition of ring A. The bond between A and D was then formed by a 

photochemical cyclization (Figure 6). 

 

 

SYNTHESIS OF ARTIFICIAL VITAMIN B12 DERIVATIVES 
 

Mammals have developed a very selective transport system for vitamin 

B12 due to the low availability of cobalamins. This system can be used to 

transport imaging agents or drugs, linked to cobalamin ('Trojan horse 

strategy'). Due to their rapid growth, tumor cells have an increased demand for 

vitamin B12 and this has led to the development of cytotoxic vitamin B12, 

derivatives. 

Vitamin B12 possesses several sites that can be derivatized, but only 

modifications at the cobalt center, the 5R ribose OH and (to some extent) the 

e-side chain do not influence the binding to TC, the transport protein in blood, 

due to steric distortion [104]. 

 

 

Organocobalamins 
 

The most common method to synthesize cobalt modified cobalamin 

derivatives involves reduction of the Co(III) center to the highly nucleophilic 

Co(I) species using either chemical reducing agents (e.g. metallic zinc, sodium 

borohydride (NaBH4)) [88, 105] or electrochemical methods (Figure 7) [106]. 

Cob(I)alamin rapidly reacts with halogenalkanes via an SN2 reaction. The 

resulting organocobalamin is highly light-sensitive. This ability may be used 

to release the attached molecule by irradiation with light.  

A less frequently used mode for preparation of organocobalamins is the 

reaction of radicaloidcob(II)alamin with organohalides (Figure 8) [107-109]. 

Cob(II)alamin is prepared by using mild reducing agents (e.g. formic acid, 
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formate salt [107]) or by heterogeneous reduction with H2/PtO2 [110]. This 

method not only produces alkylcobalamins, but also aryl- [111] and 

alkynylcobalamins [112]. The latter molecules are light-stable 

organocobalamins whereas arylcobalamins are still sensitive to light. 

However, arylcobalamins are not processed by the enzyme cobalamin--

deligase (CblC, MMACHC) which removes the axial ligand of cobalamins 

upon entering the cell, [113-115] and are thus considered 'antivitamin B12' 

[111]. They can be employed to induce B12 deficiency in laboratory animals 

for investigation of the non-cofactor roles of vitamin B12 [116]. 

 

 

Figure 7. Preparation of organocobalamins via reduction to cob(I)alamin. 

 

Figure 8. Radicaloid synthesis of organocobalamin via cob(II)alamin: R = alkyl, 

alkynyl, aryl. 

 

Ribose Modified Cobalamins 
 

The second position to functionalize without disturbing binding of 

cobalamins to the B12 transport proteins is the 5R-hydroxy group of the ribose 

moiety. The hydroxy group can be transformed into an amine-reactive 
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intermediate by the well-established reaction with 1,1'-carbonyl-di triazol 

(CDT) or 1,1 carbonyl-di-imidazole (CDI). The resulting carbamate group is 

stable to hydrolysis and thus resistant to proteases. [117] 

 

 

Vitamin B12 and Medical Applications 
 

Cobalamins linked to (bio)molecules are called B12-bioconjugates. Several 

B12-bioconjugates have already been investigated for possible applications in 

the delivery of therapeutic drugs and in molecular imaging using fluorescent 

molecules or radioisotopes via the B12-uptake system. Fluorescent molecules 

such as cyanine-5, rhodamine or fluoresceine were tethered to the cobalt ion or 

to the 5R-ribose hydroxyl group [118]. In particular CBC-244, a rhodamine 

6G labeled vitamin B12 derivative, was used to measure the binding kinetics of 

the B12 transport proteins [119]. In addition B12 derivatives containing metal 

chelator molecules were prepared to deliver Gd
3+

 (an MRI probe, but also 

cytotoxic), [120] vanadate (used in the treatment of diabetes) [121] or rhenium 

(fluorescent test compound to simulate 
99m

Tc-uptake) [122] into the cell. 

Radiolabeled vitamin B12 derivatives containing 
99m

Tc or 
111

In were studied to 

develop radioimaging agents to detect cancer [123-124].  

Anticancer drugs, such as colchicine or nido-carborane were conjugated to 

vitamin B12 to target tumor cells [125-126]. Cisplatin, one of the earliest 

chemotherapeutic drugs, was directly linked to vitamin B12 by coordination of 

the platinum to the nitrogen of the axial cyanide ligand [127]. 

This strategy is not limited to small molecules. One of the first conjugates 

was sepharose linked to the e-side chain of vitamin B12, which allowed 

purification of B12 binding proteins by affinity chromatography [128]. A 

conjugate between vitamin B12 and human serum albumin was used to 

generate B12-antibodies [129-130].  

Vitamin B12 was also conjugated to granulocyte-colony-stimulating factor 

[131], erythropoietin [131] and luteinizing hormone-releasing hormone [132]. 

The drawback of B12-bioconjugates is their accumulation in the liver and 

kidney, the natural B12 storage organs. This aspect, in addition to the 

complexity of vitamin B12 chemistry has hindered research related to B12-

conjugates in the past. 
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NOMENCLATURE OF VITAMIN B12 

 

The structure of vitamin B12 is based on a corrin ring with a central cobalt 

ion (see also chapter ―Natural cobalamins - their structure, chemical reactivity 

and co-enzymatic role‖). The four pyrrole rings are usually referred to as A 

through D. Per definition, the methyl group on C1 is bound on the ‗α-face‘ or 

‗lower face‘. The other substituents of the corrin ring periphery and the cobalt 

ligands are described as α or β when bound to the same or opposite side of the 

corrin ring plane, respectively. Side chains are referred to as ―a‖ through ―g‖ 

in a clockwise order, starting from ring A and going to ring D. The atom 

numbering starts at pyrrole ring A at the carbon connected to ring Dand 

proceeds in a clockwise direction. The side chain atoms are numbered by 

adding an additional number to the original corrin ring atom number (e.g. C82 

= 2
nd

 carbon atom of the d-side chain with its origin at C8) (Figure 9) [133]. 

 

 

Figure 9. Structure of Coβ-cyano-cobalamin (vitamin B12) the pyrrole rings labelled A 

through D and the side chains labelled a through g (left) and atom numbering (right). 

In ‗complete‘ corrinoids (e.g. cobalamins, Figure 1) the f-side chain is 

linked to a nucleotide moiety which consists of a propanol amine linker, a 3‘-

phosphoryl -D-ribose and a base (e.g. 5,6-dimethylbenzimidazole in 
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cobalamins). Commonly used terms for ‗incomplete‘ corrinoids are 

‗cobamide‘ (base removed), ‗cobinamide‘ (f-(2‘R)-2‘hydroxypropyl-amides), 

‗cobyric acid‘ (a,b,c,d,e,g-hexa-amide-f-acids) and ‗cobyrinic acid‘ 

(a,b,c,d,e,f,g-hepta-acids). 

Cobamides containing an additional base (benzimidazoles, purines, 

phenolic compounds, Figure 1) which are N-glycosyl or O-glycosyl 

derivatives respectively, at C1 of the ribofuranose unit are named by adding 

the name of the appropriate aglycon radical as a prefix to the name. The 

commonly used term cobalamin stands for a cobamide in which 5,6-

dimethylbenzimidazole is the aglycon attached by a glycosyl link from its N1 

to the C1 of the ribose (Examples: 5-methylbenzimidazolylcobamide, 

adeninylcobamide, p-cresolylcobamide). In most corrinoids the lower ligand is 

assumed to coordinate to the side of the cobalt ion if not otherwise indicated 

and is therefore not additionally named. When another ligand occupies the 

cobalt- position, it and its locant may be indicated. An additional upper 

ligand (-side) is indicated the same way (Examples: Co-

dicyanocobalamin, Co-(aqua)-Co-(adenosyl)-2-methyladeninylcobamide, 

Co-(aqua)-Co-(methyl)-p-cresolylcobamide).  
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ABSTRACT 
 

Since its discovery, vitamin B12

 (cobalamin (Cbl)) has been 

considered only as the co-enzyme in the two important reactions carried 

out by the enzymes methionine synthase (MS) and methylmalonyl-CoA 

mutase (MCM) (see ―Natural cobalamins - their structure, chemical 

reactivity and co-enzymatic role‖). 

In recent years, it has been demonstrated that the scenery of Cbl 

functions is more complex. In fact, Cbl is able to regulate the mRNA 

and/or protein levels of some cytokines and growth factors in the nervous 

system and elsewhere. Cbl is also implicated in the control of the level of 

some genes involved in Cbl transport and/or metabolism.  

 

Keywords: cytokine, growth factor, nutrigenomic, transcobalamin (TC), 

vitamin B12 (cobalamin (Cbl)) 
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INTRODUCTION 
 

It is well known that some fat-soluble and water-soluble vitamins are able 

to affect gene expression.  

In particular we mention: i) retinoic acid influences the expression of a 

multitude of cytokines that participate in traumatic reactions (i.e., 

interleukin(IL) 1 and 6, transforming growth factor- ß) (for a review see [1]); 

ii) 1,25-dihydroxyvitamin D3 genes of osteoblast metabolism (i.e., osteocalcin) 

[2]; iii) vitamin E genes involved in lipid metabolism and cell cytoarchitecture 

[3]; and iv) vitamin B2 inhibits IL-6 expression [4]. 

Recent studies on Cbl functions have been conducted in animal models of 

deficiency (totally gastrectomized or rat fed a Cbl-deficient (Cbl-D) diet) and 

it has been demonstrated that a status of Cbl deficiency causes a cytokine and 

growth factor imbalance especially in rat central nervous system (CNS) and 

peripheral nervous system, insofar as the levels and/or synthesis of some of 

these are up- or down-regulated [5-8].  

In particular, Cbl deficiency up-regulates levels and/or synthesis of: a) 

tumor necrosis factor (TNF)-α and nerve growth factor (NGF) in rat 

cerebrospinal fluid, spinal cord, and peripheral nervous system [9-11]; and b) 

soluble form of both CD40 and its receptor CD40 ligand (which belong to the 

TNF-α, TNF-α-receptor super family) in rat cerebrospinal fluid, whilst not in 

serum [12]. On the contrary, Cbl deficiency down-regulates: a) epidermal 

growth factor (EGF) and EGF receptor (EGF-R) levels in rat CNS and/or 

cerebrospinal fluid [13-15]; and b) IL-6 levels in rat cerebrospinal fluid [16]. 

The specificity of these changes is supported by the fact that - in cerebrospinal 

fluid of Cbl-D rats - the leptin, somatostatin, vasoactive intestinal peptide does 

not change and/or these changes are corrected by Cbl-replacement treatment in 

Cbl-D rats [9-16]. An increased expression of proNGF (combined to an up-

regulation of TNF-α converting enzyme and phosphatase 2A) has also been 

demonstrated in a cellular model of Cbl deficiency [17]. 

Additionally, Cbl influences the mRNA and protein synthesis of the 

cellular prion protein (PrP
C
) which is claimed to have myelinotrophic 

properties, in CNS and duodenum of rats [18]. PrP
C
 protein levels were 

significantly higher in spinal cord (SC) of Cbl-D rats than in the controls 

whilst the PrP
C
-mRNA levels were greatly reduced [19]. 

The severe neuropathological lesions caused by chronic Cbl deficiency in 

the rat CNS occur as a result of a deregulation in the physiological equilibrium 

of these growth factors and cytokines [6-8]. In fact, it has been demonstrated 

that repeated intracerebroventricular administration of the lacking molecules 
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(i.e., EGF or IL-6) or monoclonal antibodies inactivating the excess molecules 

(TNF-α, NGF, or PrP
C
) restore the normal SC myelin in Cbl-D rats without 

modifying their Cbl-D status [9-11, 14, 16, 19]; indeed, the repeated 

intracerebroventricular administration of TNF-α, anti-EGF antibodies or PrP
C
 

to normal rats reproduced the ultrastructural SC myelin lesions similar to those 

of Cbl-D neuropathy, without modifying their Cbl status [9, 11, 14, 19]. 

Data on animal models were confirmed in humans. In fact, in adult 

patients with clinically confirmed severe Cbl deficiency, an up-regulation of 

TNF-α and PrP
C 

levels in cerebrospinal fluid and serum has been observed and 

a down-regulation of EGF and IL-6 levels in serum and/or cerebrospinal fluid 

[20-23]. 

Moreover, a recent study in mice proves that a Cbl overdose can also 

modify the expression of some genes of the EGF family. The expression of 

one of the EGF receptors (HER3) and three of its ligands (heparin-binding 

EGF-like growth factor, transforming growth factor-α, and neuregulins 1α) 

was increased in SC of Cbl treated mice [24]. Vice versa, treatment with Cbl 

decreased expression of the EGF system in the kidneys in a dose-dependent 

manner [25]. 

Other studies have demonstrated that Cbl is also able to regulate the 

expression of its cell transporters. In fact, protein levels of CD320 (the 

receptor for the Cbl-transcobalamin (TC) complex) were elevated in duodenal 

mucosa, kidneys, liver, and SC of rats made Cbl-D and postoperative Cbl-

replacement treatment normalized the protein levels of this receptor [26]. An 

increased need for Cbl, induced by partial hepatectomy or reproductive 

process, results in a marked increase of intrinsic factor content and mRNA 

level in rats [27]. 

Vice versa, TC and CD320 were down-regulated in salivary gland of 

normal mice chronically treated with high doses of Cbl [28]. 

Likewise a status of Cbl overdose or Cbl deficiency (induced by chronic 

treatment with a Cbl antagonist, cobinamide) in mice induces a significant 

decrease in the expression of the lysosomal membrane Cbl transporter in SC 

[24].  

Finally, some authors have shown a regulatory role of Cbl on the level of 

some enzymes of Cbl pathway. In fact, under Cbl-D conditions MCM protein 

level is abnormally increased in rat liver [29], whilst MCM [29] and 

cystathionine beta-synthase mRNA levels are decreased [30].  

Moreover, Cbl supplementation induces in vitro translational up-

regulation of MS by shifting the mRNA from the ribonucleoprotein to the 

polysome pool [31] and a decreased transcript level of methylenetetra-
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hydrofolate reductase in mouse kidneys [28]. A summary of the regulatory 

effect of Cbl is depicted in Figure 1. 

 

 

Figure 1. Cbl regulatory role. List of the principal molecules regulated by Cbl: 

Cystathionine beta-synthase (CBS); epidermal growth factor (EGF); heparin-binding 

EGF-like growth factor (HB-EGF); interleukin(IL)-6; methylmalonyl-CoA mutase 

(MCM); nerve growth factor (NGF); neuregulin(NRG)1α; nuclear factor–kappa B 

(NF-KB); phosphatase 2A (PP2A); protein (pr.); cellular prion protein (PrP
C
); 

soluble(s); transcobalamin (TC); transforming growth factor(TGF)-α; tumor necrosis 

factor(TNF)-α; TNF-α converting enzyme (TACE). 

A recent review by Guéant et al. provides an overview on the principal 

nutrigenomic effect of Cbl [32]. 

The molecular mechanism underlying the regulatory role of Cbl in 

mammals is not known. Scalabrino et al. have hypothesized that Cbl might 

need an inducible transcription factor, nuclear factor-kappa B as a step in the 

signal transduction pathway necessary to display its non-coenzymatic effects. 

In fact, it has been demonstrated that Cbl physiologically and indirectly down-

regulates nuclear factor-kappa B levels in rat SC and liver [33]. 

Instead, studies from Oltean and Banerjee showed a remarkable regulatory 

role of Cbl which modulates internal ribosome entry site-dependent translation 

of MS [30, 34]. Other authors hypothesized that the down-regulation of mdr-1 

gene expression in HepG2 cells by Cbl was linked to the increased MS 
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activity, while no modification of the mdr-1 promoter methylation status was 

detected [35]. 

It is of interest to recall other molecular mechanims of Cbl (for an 

overview see [36]), in particular, recent studies have showed that Cbl cofactors 

directly interact with mRNA in regulatory ‗ribo-switches‘ in microorganism 

[37, 38] or act as a cofactor of regulatory proteins [38]. However, in mammals, 

such regulatory ‗ribo-switches‘ are, until to date, unknown. 

 

 

CONCLUSION 
 

All of these findings show that Cbl plays a central role in the regulation of 

the physiological equilibrium of several genes and/or protein in the 

mammalian CNS and elsewhere, independently of or going beyond its classic 

coenzyme functions. All of these studies have shed new light on the new 

frontiers of nutrigenomics, a branch of epigenomics. Different dietary habits, 

leading in this case to a different intake of a nutrient (vitamin) can really alter 

gene expression. The alterations are referred to as non-heritable changes of 

gene expression induced by mechanisms such as methylation of 

deoxyribonucleotidic acid(s), histone acetylation/methylation, dysregulation of 

gene transactivation and synthesis of miRNA, etc. It is interesting to note that 

the studies on epigenetic role of Cbl could be applied also in the field of 

oncology (see subchapter ―Role of Cbl in cancer‖). 
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ABSTRACT 
 

Deficiency of Vitamin B12 (also called cobalamin (Cbl)) is the result 

of genetically determined or acquired defects. The first group includes 

defects in the transport and/or metabolism of Cbl and its co-enzymes. The 

second group is mainly composed by nutritional deficiencies and 

malabsorption problems.  

A Cbl-deficient (Cbl-D) status in fetus, embryo and child in the first 

months of life is also worth a mention, and it is often traced to a Cbl-D 

status in the mother. 
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INBORN ERRORS OF CBL TRANSPORT  

AND/OR METABOLISM 
 

Abnormalities in the transport and/or metabolism of Cbl and its co-

enzymes are included in the genetically determined cause of Cbl deficiency.  

Thirteen different inborn errors affecting the intestinal Cbl absorption, the 

transport of Cbl in blood, the uptake of Cbl by cells or the intracellular Cbl 

metabolism have been identified [1,2]. Each of these disorders is inherited as 

an autosomal recessive trait. 

Cbl transport system is a complex and precise process (see for the details 

the Chapter ―Vitamin B12 Absorption and Transport in Mammals‖), and an 

alteration in any of the stages can produce a Cbl-D status.  

A deficiency of haptocorrin(HC) was diagnosed only in a very limited 

number of children and is usually associated with a deficiency of other 

neutrophil granulocytes products, such as lactoferrin. At the best of our 

knowledge, mutations in HC gene (on chromosome 11 q11-12) have been 

identified only in two families [3]. In addition, patients with deficiency in 

serum HC levels could present a low serum Cbl levels but no symptoms of 

vitamin deficiency [4-6].  

The Cbl malabsorption may be also the consequence of a defective 

intrinsic factor(IF)-Cbl complex. A defective complex formation is the result 

of inadequate proteolysis of food Cbl, reduced transfer of Cbl from R proteins 

to IF, or defective synthesis of IF, cubilin or amnionless [7,8]. An inadequate 

proteolysis and a reduced transfer to IF could be the consequence of an 

abnormal intragastric events and a reduced or inactive production of pancreatic 

protease, respectively. Genetically, mutations in the gastric IF gene (on 

chromosome 11q12.1) are causative of IF deficiency (IFD; OMIM: 261000). 

Pathogenic mutations in either cubilin or amnionless cause the so called 

Imerslund-Gräsbeck syndrome (IGS;OMIM: 261100) [8]. 

Almost 100 children with inherited IFD have been identified.They present 

the classical symptom of pernicious anemia (i.e, impaired intestinal absorption 

of dietary Cbl) but not atrophy of gastric intestinal cells and antibodies against 

IF. In some cases, an absence of IF in gastric secretions was observed, while 

other patients showed an abnormal IF with decreased affinity for cubilin or 

increased susceptibility to proteolysis (for a review see [1]). At least 60 

mutations have been identified, the majority of which lead to truncate protein 

and loss of function [9]. 
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IGS was first described in Finland and Norway, where the prevalence is 

about 1:200,000. Currently, approximately 300 cases have been published 

worldwide, with new cases predominantly appearing in eastern Mediterranean 

countries. 

The molecular basis of IGS involves a mutation in one of two genes, 

cubilin (on chromosome 10p13) or amnionless (on chromosome 14q32.32), 

which both codify for components of the intestinal receptor of the Cbl-IF 

complex and the receptor mediating the tubular reabsorption of proteins from 

the primary urine [10]. In fact, IGS is also called selective Cbl malabsorption 

with proteinuria, since mild proteinuria (with no signs of kidney disease) is 

present in about half of the patients. Proteinuria could be the effect of the 

defective role of cubilin and/or amnionless in reabsorbing of filtrate proteins in 

the proximal tubule of the kidney.  

It has been demonstrated that all IGS cases in Finland were due to cubilin 

mutations (three different mutations) and in Norway to amnionless mutations 

(two different mutations). In Turkey, Israel, and Saudi Arabia, two different 

amnionless mutations and three different cubilin mutations were present. 

Scandinavian cases appear to be typical examples of enrichment by founder 

effects, while in the Mediterranean region high degrees of consanguinity 

expose rare mutations in both genes [11]. 

Some inborn error of Cbl transport are due to the lack of transcobalamin 

(TC) synthesis or production of a not-functional TC, unable to bind Cbl and 

transport it from the blood into the cells. 

TC deficiency (OMIM: 275350) is characterized by elevated total plasma 

homocysteine and methylmalonic acid concentrations but normal serum Cbl 

levels, since most Cbl in serum is carried on HC. Diagnosis of TC deficiency 

is confirmed studying the synthesis of TC in cultured fibroblasts, or by 

molecular analysis of the TC gene (on chromosome 22q12.2) [12]. 

Over 40 patients with TC deficiency have been described and mutations in 

TC gene have been identified [1]. Most of the reported mutations are deletions 

or insertions in the TC gene resulting in frame shifts that predict protein 

truncation. Nonsense mutations and point mutations that activate exonic 

cryptic splice sites have also been reported [1,13,14]. Polymorphic variants 

have also been described. In the white population, the most frequent 

polymorphism in TC gene is the substitution of guanine to cytosine in 775 

position (775G> C), which causes the substitution of proline with arginine at 

codon 259 and a higher serum levels of methylmalonic acid if confronted with 

subjects with other genotype [15]. 
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Defects in the TC receptor (CD320; OMIM: 606475) for cellular uptake 

of Cbl have also been identified. CD320 (on chromosome 19p13.2), expressed 

on the plasma membrane, binds TC saturated with Cbl (holo-TC) and mediates 

cellular uptake of Cbl.  

Analysis of CD320 in five asymptomatic newborns with elevated 

methylmalonic acid and decreased uptake of holo-TC in fibroblasts, identified 

a homozygous single codon deletion, resulting in the loss of a glutamic acid 

residue in the low-density lipoprotein receptor type A-like domain [16]. 

Finally, it was also described a patient with elevated levels of both TC and the 

soluble form of CD320 that presents elevated levels of total plasma Cbl but 

neurological symptoms similar to Cbl deficiency [17]. 

Into the cells, Cbl is transported into lysosomes to be released from TC 

and exported in the cytosol. Abnormalities in lysosomal transport have also 

been identified, but they are still classified as metabolic defects by some 

authors. 

Until now, two proteins have been identified to be responsible for Cbl 

lysosomal release into the cytoplasm, the so called lysosomal membrane 

transporter 1 (LMBRD1) and ABCD4 [2,18]. The so called cblF and cblJ are 

two inherited disorders due to mutation in LMBRD1 (on chromosome 6q13) 

and ABCD4 (on chromosome 14q24.3) genes, respectively [2,18]. In cblF 

(OMIM: 277380) and cblJ (OMIM: 614857) inborn error of Cbl metabolism, 

free vitamin accumulates in lysosomes, thus hindering its conversion to 

cofactors. Both patients present a diminished synthesis of both Cbl coenzymes, 

resulting in methylmalonic aciduria and homocystinuria. 

The anomalies of the synthesis of Cbl coenzymes (see the chapter 

―Natural cobalamins – their structure, chemical reactivity and co-enzymatic 

role‖ for details on Cbl- enzymes and co-enzymes) cause the genetically 

determined diseases of intracellular Cbl metabolism. Specific diagnosis of 

these inborn errors has traditionally depended on ―complementation analysis‖, 

which has resulted in the definition of six/eight types named: cblA, cblB, cblC, 

cblD, cblE, cblG, cblF, cblJ. Each of which is autosomal recessive and 

representing a mutation at a separate gene. In the ―complementation analysis‖, 

patient cells are fused with fibroblasts from patients with known Cbl inborn 

defect and the function of Cbl-dependent enzymes (methionine synthase (MS) 

and methylmalonyl-CoA mutase (MCM)) is checked. If the mutations in the 

two cells affect different loci, the enzymatic function in the fused cells will be 

normal.  

For cblF and cblJ see the paragraph on abnormalities in lysosomal 

transport. 
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The diseases named cblA (OMIM: 251100) and cblB (OMIM: 251110) are 

due to a decreased synthesis of 5'-deoxy-5'-adenosyl-cobalamin (AdoCbl) 

accompanied by a normal synthesis of methylcobalamin (MeCbl), with a 

consequent high serum levels of methylmalonic acid (methylmalonic 

aciduria). cblA and cblB patients present lesions in two genetically distinct 

loci. In particular, cells from cblA patients are unable to convert the 

hydroxoCbl in AdoCbl, and present mutations in the MMAA gene (on 

chromosome 4q31.21), which apparently play a role in transfer of AdoCbl to 

methylmalonylCoA and in the stabilization of the mutase bound AdoCbl 

[1,19]. One mutation, c.433C>T (R145X), represents 43% of pathogenic 

alleles in North America patients and a common haplotype was identified [18]. 

Fibroblasts from cblB patients, instead, present abnormalities at the level of 

the enzyme cob(I)alaminadenosyltrasferase (EC 2.5.1.17 (on chromosome 

12q24.11)) [1,5]. Patients with a defect in the enzyme MCM (mut patients) 

present symptoms similar to cblA and cblB diseases. 

Patients with cblE (OMIM: 236270) and cblG (OMIM: 250940) disorders 

present decreased synthesis of MeCbl with normal synthesis of AdoCbl, and 

decreased function of MS. Using a complementation analysis it is possible to 

distinguish the two complementation groups of patients with cblE or cblG 

disease. cblE patients present a mutation in the gene (on chromosome 

5p15.31) coding for the enzyme methionine synthase reductase (EC 

4.2.99.10), which is necessary for the reduction of Cbl to cob(I)alamin, and 

therefore allows the binding of Cbl itself to MS [20].The most frequent 

mutation in methionine synthase reductase, representing 25% of disease-

causing alleles, is an intronic mutation (c.903 + 469T C) that creates a novel 

splice acceptor site in exon 6 resulting in the inclusion of 140 bases of intronic 

sequences in the mRNA [1]. cblG patients, instead, have abnormalities in the 

gene MTR (on chromosome 1q43.) that encodes the catalytic subunit of MS 

(EC2.1.1.13) [21]. 

cblC (OMIM: 277400) and cblD (OMIM: 277410) patients present a 

diminished synthesis of both Cbl coenzymes, resulting in methylmalonic 

aciduria and homocystinuria. cblC disorder is probably the most common 

inborn error of Cbl metabolism (more than 500 patients) and it is caused by 

mutations in the MMACHC gene (on chromosome 1p34.1). The gene 

MMACHC was identified in 2006 [22] and, although the exact function of the 

protein is currently unknown, appears to play an important role in the 

synthesis of Cbl intermediates. For instance, it has been shown that 

MMACHC can catalyze the decyanation of cyanoCbl and a dealkylation 
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reaction of AdoCbl or MeCbl [23] (see the chapter ―Natural cobalamins – their 

structure, chemical reactivity and co-enzymatic role‖ for further details). 

Finally, cblD patients present abnormalities in the MMADHC gene (on 

chromosome 2q23.2), which encodes a protein of unknow function [1]. 

See Table 1 (left part) for a summary of the principal inherited causes of 

Cbl deficiency. 

 

Table 1. Principal causes of Cbl deficiency in Humans 

 

Inherited Acquired 

Abnormalities in Cbl 

transport/absorption 
HC deficiency 

IF deficiency or defective IF  

Imerslund-Gräsbeck syndrome 

TC deficiency or defective TC  

Defects in CD320 

 

Abnormalities in lisosoma transport 
cblF disease 

cblJ disease 

 

Abnormalities in Cbl metabolism 
AdoCbl deficiency (cblA and cblB diseases); 

Combined deficiencies of AdoCbl and 

MeCbl (cblC, cblD diseases); 

MeCbl deficiency (cblE, cblG diseases); 

Defects in MCM (mut patients) 

Autoimmune chronic atrophic gastritis 

 

Chronic Helicobacter pylori gastritis 

 

Gastric resection 

 

Pancreatic insufficiency 
pancreatitis; 

pancreatectomy 

 

Intestinal disorders 
infestation from diphyllobothriumlatum; 

blind loop syndrome -tropical sprue; 

lymphomas or tuberculosis of the intestine; 

celiac disease; 

Crohn's disease.  

 

Long-term N2O exposure 

 

Insufficient Cbl intake 

Abbreviations: AdoCbl:5'-deoxy-5'-adenosyl-cobalamin; Cbl:cobalamin; HC: 

haptocorrin; IF:intrinsic factor; MeCbl:methylcobalamin; MCM:methylmalonyl-

CoA mutase; MS:methionine synthase; TC: transcobalamin. 

 

 

ACQUIRED CAUSES OF CBL DEFICIENCY IN ADULTS 
 

Pernicious anemia is the most common cause of Cbl acquired deficiency. 

It is an autoimmune disease that affects parietal cells located in the body and 



Causes of Vitamin B12 Deficiency 79 

fundus of the stomach, although in the blood of patients it is also possible to 

identified auto-antibodies against cellular proton pump and/or against the IF 

itself. The consequence is a reduced production or inactivation of IF. The auto-

immunization against parietal cells, mediated by CD8 
+
T lymphocytes, causes 

a chronic atrophic gastritis (type A) and reduces the production of 

hydrochloric acid (achlorhydria). Colonization of the stomach by Helicobacter 

Pylori can result in a chronic gastritis (gastritis of type B) that reduces the 

number of gastric parietal cells producing IF[24,25]. 

Total or partial gastrectomy could produce total or partial decrease of IF 

synthesis, and ultimately, Cbl deficiency[26]. Fortunately since the1980s, 

gastrectomy and terminal small intestine surgical resection decreased 

frequency, and so Cbl malabsorption from this cause has become rarer. 

In 50-70% of patients with functional insufficiency of exocrine pancreas 

following chronic pancreatitis or pancreatectomy, a malabsorption of Cbl [27] 

has been shown. Poor Cbl absorption is probably due to a deficiency of 

pancreatic proteases, which in turn prevents the cleavage of R protein [27]. 

Some intestinal diseases, such as infestation from diphyllobothrium latum, 

blind loop syndrome (in which parasites and/or bacteria compete with the host 

organism for the use of the Cbl [28,29]), tropical sprue, lymphomas or 

tuberculosis of the intestine, celiac disease and Crohn's disease are other 

causes of Cbl malabsorption [30]. 

Prolonged use of nitrous oxide (N2O), an anesthetic in dentistry, can cause 

a state of Cbl deficiency. In fact, N2O irreversibly oxidizes the cobalt ion of 

Cbl from the (+) 1 to the (+) 3 valence state. Oxidation of the cobalt ion by 

nitrous oxide prevents MeCbl from acting as a coenzyme in the production on 

methionine [31]. 

Long-term ingestion of antiacids, such as H2-receptor antagonists and 

proton-pump inhibitors, and metformin treatment could be also a cause of Cbl 

deficiency [30]. 

Some authors classified all of these disorders, except pernicious anemia, 

as food Cbl malabsorption syndrome. In fact, this syndrome is characterized 

by Cbl deficiency in the presence of sufficient food-Cbl intake and a normal 

Schilling test ruling out malabsorption or pernicious anemia (diagnosis of 

exclusion) [30]. 

Finally, Cbl deficiency may be also due to insufficient Cbl introduction 

with food (strict vegetarian diets, namely the veganism). 

See Table 1 (right part) for a summary of the principal acquired causes of 

Cbl deficiency. 
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CBL DEFICIENCY IN FETUS, EMBRYO AND CHILD 

IN THE FIRST MONTHS OF LIFE 
 

Recommended intake of Cbl for pregnant woman is increased to 2.6 µg 

versus 2.4 µg/day for adults to meet the need of the fetus [32]. During 

pregnancy, the fetus absorbs Cbl through the placenta. Case reports have long 

indicated that infants of Cbl-D mothers often manifest disorders connected to 

Cbl deficiency (i.e., megaloblastic anemia, irritability, failure to thrive, 

reduced cerebral growth) [32]. 

In newborns, Cbl deficiency is often due to a diet with low Cbl content 

milk (i.e., milk from Cbl-D mothers). Moreover, recent studies have 

demonstrated low concentrations of Cbl in foremilk and hindmilk 4 months 

after childbirth. Low concentrations of Cbl milk mirrored biochemical changes 

in infants, which suggests an impaired Cbl status and indicates that an 

exclusive nutrition with mother's milk may not be sufficient for the supply of 

Cbl from this age [33]. 

Finally, Cbl deficiency in children, if not due to genetically determined 

cause, is often associated to a diet low on animal source food [32]. 

 

 

CONCLUSION 
 

Cbl deficiency results from several causes (inborn or acquired) inducing 

metabolic abnormalities and severe symptoms. Identifying the exact cause, we 

can remove this (i.e., changing eating habits during insufficient introduction) 

and/or go with the best therapy. In some cases the deep knowledge of cause is 

also necessary to prevent a status of deficiency (i.e., supplementary therapy 

immediately after gastric resection). 
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ABSTRACT 

 

In this chapter, the principal tests for determination of vitamin B12 

(cobalamin (Cbl)) deficiency will be analyzed. It will address a series of 

issues related to these assays: reference values, potential markers and 

technical disadvantages. 

Even if partially outside the chapter topic, it is useful to recall also 

recent studies related to utilization of high Cbl levels as potential marker 

of some diseases. 

 

Keywords: Cbl deficiency; holotranscobalamin (holoTC); hyperco-

balaminemia; methylmalonic acid (MMA); total homocysteine (tHcy) 

 

 

 

 

                                                        
*
 elena.mutti@libero.it. 



Elena Mutti 86 

INTRODUCTION 
 

A Cbl-deficient (Cbl-D) status could be classified in: i) uncommon and 

serious clinical Cbl deficiency characterized by megaloblastic anemia and/or 

neurocognitive dysfunction; or ii) more common subclinical (mild, 

asymptomatic) Cbl deficiency, defined by abnormal concentrations of Cbl-

related biomarkers (also referred to as subclinical Cbl deficiency) [1]. The 

common biomarkers used for Cbl status are: serum Cbl, methylmalonic acid 

(MMA), and total homocysteine (tHcy) [1]. Holotranscobalamin (holoTC) is 

also considered a possible indicator of Cbl status [1]. 

Available biomarkers can be categorized as those that directly measure 

Cbl in blood and those that measure metabolites that accumulate with 

inadequate amounts of Cbl.  

Serum Cbl and holoTC measure the amount of Cbl available for the 

body‘s cells. These biomarkers, therefore, reflect the broad Cbl status range 

from high risk of severe deficiency to adequacy. MMA and tHcy, which are 

functional (metabolic) measures of Cbl status, accumulate when 

concentrations of Cbl are inadequate and mirror any lack of Cbl within the 

cells. These functional measures are useful for identifying subclinical Cbl 

status and reflect early changes in Cbl status.  

Since factors unrelated to Cbl status affect all 4 biomarkers (i.e., impaired 

renal function, genetic variation, disease conditions, drug use, pregnancy, 

technical problems) we could obtain false-positive or false-negative 

classifications of Cbl deficiency. For this reason, information from both 

categories of biomarkers can yield a more accurate assessment of Cbl status 

than information from only one Cbl status category [1]. Even, a study from 

Fedosov suggests to combine all the four parameters to obtain a more reliable 

indication of the Cbl status [2]. Furthermore, some authors suggest that the 

clinical picture is the most important factor in assessing the significance of test 

results assessing Cbl status. The interpretation of the result on Cbl status 

should be considered only in relation to the clinical circumstances [3]. 

Measurements of serum Cbls have been used worldwide since the 1950s. 

Despite limited specificity and controversy about their sensitivity, these 

measurements are still the standard investigation for Cbl deficiency. Patients 

with serum Cbl concentrations well below the reference interval are generally 

considered to have Cbl deficiency [4].  

Opinions differ as to the optimal laboratory cutpoint for the serum Cbl 

test, due in part to the insidious onset and slow progression of the disorder and 

some limitations of current assays. Some studies have tended to dichotomize 
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low values at 148 pmol/L (200 pg/mL) [5], others suggest a value of 125 

pmol/L (with a ―gray area‖ at 125-250 pmol/L) [4]. 

An additional problem when comparing different assays and results from 

different laboratories concerns the units for reporting of serum Cbl levels. 

Some report in pg/mL (ng/L) and some in pmol/L (1 pmol/l = 1.355 pg/ml) 

[3].  

Cbl assays require extraction of Cbl from its binding proteins in plasma 

and conversion of the native Cbl to cyanoCbl (CNCbl), the non physiologic 

form that serves as the assay standard.  

Different methods exist for the measurement of the free CNCbl. Over the 

years, growth response of various microorganisms has been used in 

quantification of Cbls in biological materials and foods. The used 

microrganisms have been Lactobacillus delbrueckii, Escherichia coli, Euglena 

gracilis, and Ochromonas malhamensis [6]. Older assays were then replaced 

by radioisotopic competitive binding techniques using intrinsic factor (IF) as 

the Cbl-binding protein. In fact, the principle of this assay is based on the 

competition for the binding to IF between added isotope-labelled CNCbl 

versus CNCbl from a sample. Immunoenzymatic luminescence methods, that 

rely on competitive binding by IF, have now replaced isotopic assays [5].  

Elevated concentrations of MMA are considered the most representative 

marker of metabolic Cbl insufficiency, but poor assay availability limits 

clinical utility. MMA is a sensitive marker of Cbl deficiency, and an elevated 

MMA concentration is often used as a gold standard for the classification of a 

patient‘s status as Cbl-D or Cbl non-deficient. Major drawbacks are the low 

specificity of marginally elevated MMA values, the complexity of the assay, 

the high cost, and often a slow turnaround time [4]. MMA assay is therefore 

not widely used. Gas chromatographic assay of MMA in urine has been 

available since the late 1950s but nowadays sensitive capillary gas 

chromatography/mass spectrometry assays made it possible to measure small 

concentrations in serum accurately [5]. 

Exceptionally high levels of plasma MMA (>750 nmol/l) almost 

invariably indicate Cbl deficiency [3]. Many laboratories defined cutoffs by 3 

or 2 standard deviation from the mean (≈<370 or <270 nmol/L, respectively) 

but the most commonly applied MMA cutoff is ≈270 nmol/L [5]. 

tHcy has low specificity because it also increases in patients with folate 

and possibly thiamine and vitamin B6 deficiency. It is considerably a good 

marker of Cbl deficiency only in a folate-fortified population [7,8]. In the 

clinical laboratory, plasma tHcy is measured by a variety of techniques, briefly 

classified into two groups: chromatographic methods and 
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enzyme/immunoassays [3, 7]. There is no consensus on the reference range, 

although most laboratories regard a concentration above 13-15 µmol/L as 

indicative of hyperhomocysteinemia [3, 8]. A major drawback to the clinical 

utility of tHcy is that sample collection and processing is critical as the serum 

sample must be kept cool and then centrifuged and removed from the red cells 

within 2 h of collection [3]. 

Since diagnostic accuracy of serum Cbl levels for the assessment of Cbl 

status is low, hence the need of a more sensitive marker. Emerging evidence 

indicates that holoTC seems more suitable than total Cbl for diagnosis of Cbl 

deficiency. Plasma holoTC transports the active Cbl (see the chapter ―Vitamin 

B12 absorption and transport in mammals‖) and is decreased in a Cbl-D status.  

In a study from Obeid and Herrmann [9], subjects with normal renal 

function (evaluated by normal serum creatinine) showed a negative correlation 

between serum holoTC and MMA, but in some cases (MMA > or =300 

nmol/L and holoTC < or =35 pmol/L) concentrations of total Cbl were still 

well within the normal range. These data displayed a higher sensitivity and 

specificity for holoTC compared with Cbl for detecting concentrations of 

MMA > or =300 nmol/L [9]. There is also the added advantage of use in 

pregnancy as the holoTC fraction of Cbl does not seem to be subject to the 

physiological drop seen in total serum Cbl over the course of pregnancy [11]. 

It has been demonstrated that holoTC in physiological conditions has a 

reference interval of around 40–200 pmol/L [10, 12]. 

Recent studies questioned the values of the cut-off and the specificity of 

the results obtained from patients with values around the threshold. In patients 

with borderline values of holoTC the concordance between holoTC and MMA 

levels was poor [13,14]. In fact, Hermann and Obeid [15] suggest that all 

testing for Cbl deficiency should start with holoTC measurement but, in order 

to improve assessing, data with 23 pmol/L < holotTC < 75 pmol/L should be 

followed by MMA testing. Renal dysfunction and folate deficiency, that may 

affect the levels of holoTC, should be also considered [13, 14]. 

Further studies could be needed to evaluate all of these problematics and 

technical issue (test‘s cost and limited availability), but we associate to some 

authors that predict that holoTC will be an excellent marker for monitoring a 

population‘s Cbl status [10]. 

In some underdeveloped areas, the described assays on blood and/or 

serum are not feasible due to high costs and/or lacking infrastructure. Dried 

blood spot analysis could be an economical and field applicable substitute. The 

advantages of dried blood spot analysis include less invasive blood sampling, 

elimination of many blood preparation steps, no requirement for refrigerated 
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storage, and ability to easily mobilize large numbers of samples. There are 

some reports on the potential of dried blood spot for detecting total Cbl [16] or 

MMA [17]. These methods could be used also in large-scale population-based 

surveys without the requirement of an on-site laboratory infrastructure. 

See Table 1 for a summary of the four biomarkers common used for Cbl 

status. 

 

Table 1. Principal characteristics, advantage and disvantage of laboratory 

tests used to diagnose Cbl deficiency [4] 

 
Test Type of test Rationale Proposed 

cut-off 

Advantage Disvantage 

Total Cbl Direct ↑ in Cbl 

deficiency 

<148 pmol/L  

or  

<125 pmol/L 

(with ―gray 

area‖ at 125-250 

pmol/L) 

Accessible 

Cheap 

Variation in reference 

interval due to different 

methods; 

Sensitivity and 

specificity debatable; 

Large % of 

indeterminate results 

(grey-zone) 

MMA Functional ↓ in Cbl 

deficiency 

>370 nmol/L  

or  

>270 nmol/L  

 

High sensitivity Not easily accessible; 

Expensive;  

Requires mass 

spectrometry/gas 

chromatography; 

Low Specificity; False 

positive with reduced 

renal function and 

increases with age 

Hcys Functional ↑ in Cbl 

deficiency 

>13-15 µmol/L  Low Specificity; 

HoloTC Direct ↓ in Cbl 

deficiency 

<35 pmol/L 

(with a ―gray 

area‖ at 23-75 

pmol/L) 

Expected to have 

high sensitivity 

Low Specificity; 

Affected by renal 

function; 

Improved specificity 

over other tests; 

Changes occur early in 

Cbl depletion 

 

Once Cbl deficiency is diagnosed, using one or more of the above 

markers, next challenge is to find the cause of Cbl deficiency. If a thorough 

history reveals dietary insufficiency, or gastric or ileal resection, usually, 

further laboratory tests are not recommended, alternatively patients could be 

subjected to tests aimed mainly at evaluating the function of the gastric 
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mucosa and/or the Cbl absorption [4]. Antibodies to IF and gastrin or 

pentagastrin I levels are often used to diagnose pernicious anemia. 

For years, Shilling‘s test, in which labeled Cbl (with or without IF) is 

administered orally, has been used to investigate whether lack of the vitamin is 

caused by lack of IF. This test has been considered the gold standard for 

investigating Cbl absorption. Shilling‘s test is, however, no longer readily 

available due to increasing difficulties in obtaining labeled Cbl and IF. Nexo et 

al. proposed alternative approaches to measuring Cbl absorption, named 

CobaSorb [18] and C-CobaSorb [19]. In CobaSorb an oral dose of non-

radioactive Cbl is administered, and active Cbl absorption is reflected by an 

increase in holoTC. In C-Cobasorb the increase of CNCbl bound to TC is 

measured instead of holoTC. 

A recent study suggests the importance of CobaSorb and C-CobaSorb to 

identify patients not requiring Cbl injection therapy and to choose the best 

route of administration (injection respect to oral treatment is inconvenient for 

the patient and constitutes a cost for society) [20]. 

Interest in monitoring Cbl status increased with folic acid fortification of 

cereal grains in the United States in 1996, since this excessive intake of folic 

acid might obscure or mask Cbl deficiency and potentially delay its diagnosis 

until neurologic consequences become irreversible [21]. A study from Selhub 

et al [21] has shown that having low Cbl status, regardless of serum folate, was 

associated with a significantly increased prevalence of both anemia and 

cognitive impairment, but the worst combination was low Cbl status and high 

serum folate. Specifically, anemia and cognitive impairment were observed ‘5 

times as often in the group with low Cbl status and high serum folate as in the 

group with normal Cbl status and normal serum folate. These data represent 

important epidemiologic evidence of an adverse interaction between high 

folate status and low Cbl. Consequently, they seem to support the idea that the 

neuropsychiatric consequences of Cbl deficiency are exacerbated by high 

folate status. 

So far, researches have been focused on Cbl-D status and specific and 

sensible methods to detect it,neglecting hypercobalaminemia (high serum Cbl 

levels) that is a frequent and underestimated anomaly. Recent evidence has 

described that various pathological conditions (i.e., solid neoplasms, 

hematological malignancies and liver and kidney diseases) are linked to 

elevated serum Cbl [22,23]. The aetiological profile of high serum Cbl 

predominantly encompasses severe disease entities for which early diagnosis 

is critical for prognosis, hereof the potential importance of the Cbl assay as an 

early diagnostic marker [22,23].  
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However, so far, the use of high levels of Cbl as a marker of some 

diseases has not been thoroughly evaluated. Further studies are needed to 

better understand the clinical data related to high serum Cbl and the approach 

to adopt upon discovery of elevated Cbl levels.  

 

 

CONCLUSION 
 

A fast and correct diagnosis of Cbl deficiency is necessary for a speedy 

therapy. According to above-mentioned contents, we believe that it is 

important to improve all the methods but it will probably continue to be 

necessary a double or quadruple analysis using multiple methods. We also 

believe that the scientific community must finally take account of the 

possibility to detect hypercobalaminemia and to adopt this as a marker of some 

diseases. 
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ABSTRACT 
 

Vitamin B12 (cobalamin (Cbl)) acts on many organs and systems of 

the human body. Because of Cbl systemic action, a Cbl-deficient (Cbl-D) 

status recurs as numerous symptoms, more or less serious, at the level of 

the whole body. 

Conventionally, symptoms are different between inherited disorders 

in which Cbl deficiency occurs at birth or juvenile age and acquired 

disorders that affect adults.  

Deserve a special mention also the effects of a Cbl-D status when it 

develops during fetal development of the individual (i.e., in Cbl-D 

pregnant mothers). 

For this reason, this chapter has been divided in subchapters 

describing the effects of deficiency during development, in children and 
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adults, dividing the latter in the principal affected targets (nervous 

system, blood, heart, gastric system and immune system). 

The role of Cbl in cancer is another important topic of this chapter. 

As a dietary methyl group donor, Cbl can partecipate in human 

cancerogenesis modulating epigenetic mechanisms: DNA methylation is, 

in fact, crucial for altering gene expression of oncogenes and 

oncosuppressors. 

 

Keywords: cancer; cardiovascular disorder; Cbl deficiency; fetus 

development; lymphocyte; macrocyte; megaloblast; neuropathy; white 

matter 

 

 

INTRODUCTION 
 

Effects on Fetus Development 
 

Several studies have focused attention on the maternal nutrition as the 

major determinant of the health of the offspring. In pregnant women with Cbl 

deficiency, the levels of Cbl transported to the fetus decline respect to the 

physiological one (intrauterine Cbl deficiency) [1].  

An intrauterine Cbl deficiency induces several disorders in fetus. In fact, 

infants whose mothers were Cbl-D had a low birth weight compared to normal 

one [1,2]. In particular, studies demonstrated that Cbl status in the mother was 

related to neonatal Cbl status and low neonatal Cbl concentrations were 

adversely associated with low birth weights [3, 4]. 

Infants with intrauterine Cbl restriction are also at increased risk of type 2 

diabetes later in life [1]. In a study on Indian population, low maternal Cbl 

status coupled with high folate increased the risk of insulin resistance in the 

child, of gestational diabetes and permanent diabetes [5]. 

Although authors report discordant data, according to some studies, Cbl 

insufficiency may also increase risk of neural tube defects (failure of the 

neural tube to close during gestation induces spina bifida, anencephaly, and 

encephalocele) [1, 6-8]. 

Just to quote one, decreased Cbl concentrations were found in amniotic 

fluid samples derived from neural tube defects pregnancies [9]. Interestingly, 

the fathers of babies with neural tube defects had significantly lower serum 

Cbl levels in comparison to father of normal babies [10]. 

Experimental studies look confirm the importance of Cbl during fetus 

development. In fetus from severe deficient mothers, disorders in hematopietic 
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system (i.e., decreased number of red blood cells, decreased level of 

hemoglobin [11] and immature hematopoietic elements [12]) and 

morphological alterations in almost all organs [12, 13] have been 

demonstrated.  

A study in a sheep model demonstrated that clinically relevant reductions 

in the availability of Cbl, folate and methionine from maternal diet around the 

time of conception lead to widespread epigenetic modifications to the genome 

associated with increased adiposity, insulin resistance, altered immune 

function, and high blood pressure in adult offspring [14]. 

Finally, a status of Cbl deficiency looks also to be associated with reduced 

number of pregnancies, increasing male and female infertility and recurrent 

fetal loss [15-17].  

 

 

Effects in Childhood 
 

It is possible to observe a Cbl-D status in children raised on low diet on 

animal source foods or with inherited Cbl-related diseases (see the chapter 

―Causes of vitamin B12 deficiency‖).  

Infants born to mothers with a normal Cbl status have stores of Cbl that 

are adequate to sustain them for the first several months postpartum (Cbl 

deficiency rarely occurs before about 4 months of age). Infants of Cbl-D 

breastfeeding mothers, or infants receiving low amounts of animal-source 

foods, may be vulnerable to Cbl deficiency between 6 and 12 months of  

age [18]. 

Some studies in Cbl-D children have highlighted a possible impact of Cbl 

status on cognitive functions [1]. 

In Cbl-D children the damage is usually limited to the brain and 

characterized by white matter loss with delayed myelination [19, 20], magnetic 

resonance imaging abnormalities included brain atrophy, callosal thinning, 

craniocaudally short pons, and increased T2 FLAIR signal in periventricular 

and periatrial white matter [21-23]. 

Clinical seizures, developmental delay, microcephaly, hypotonia and 

nystagmus have been demonstrated in cblC patients and/or infants with 

nutritional Cbl deficiency [23-26]. Neurodevelopmental deficits were noted 

most prominently in motor skills, with relative preservation of socialization 

and communication skills [23]. Other studies indicated the presence of 

intellectual dysfunction, attention problems, concerns with behavioural aspects 

of executive function in cblC patients [27]. A negative correlation between the 
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plasma Cbl concentration and the mental development index score was also 

identified [28]. 

In addition to neurological symptoms, infants may experience other 

physical symptoms, including abnormal pigmentation, enlarged liver and 

spleen, sparse hair, food refusal, anorexia, failure to thrive and  

diarrhea [18, 24-26]. 

In infants, Cbl deficiency is also associated to megaloblastic/macrocytic 

anemia and neutropenia [29, 30]. The neutrophil could appear 

dysgranulopoietic and defective in function (low chemotaxis and elevated 

superoxide production) [31, 32]. 

Some case reports suggested an association of hemolytic-uremic 

syndrome (characterized by microangiopathic hemolytic anemia, thrombo-

cytopenia, and renal failure) with cblC disorder [33-36]. 

Few studies have indicated cblC deficiency as the common denominator 

in cases of isolated pulmonary hypertension [37], renal thrombotic 

microangiopathy [38] and in the rare combination of pulmonary hypertension 

and renal thrombotic microangiopathy [39]. 

Finally, a study demonstrated the presence of structural heart defects  

(i.e., left ventricular non-compaction, secundum atrial septal defect, and mitral 

valve prolapse) in 50% of analysed patients with cblC [40]. 

 

 

Neurological Effects 
 

In adults, the neurologic manifestations due to Cbl-D status are not 

necessarily secondary to the hematological symptoms. Only some of the 

patients with pernicious anemia develop a neuropathy and,viceversa, patients 

with neurological disturbances due to Cbl deficiency, but without anemia or 

macrocytosis, have been described [41, 42]. Moreover, in some patients the 

severity of the hematologic and neurologic manifestations may be inversely 

related. 

In the central nervous system (CNS) the histopathological hallmarks of the 

neuropathy due to Cbl deficiency are: (i) a diffused but uneven vacuolation 

(so-called ―spongiform vacuolation‖) of the white matter (especially the spinal 

cord (SC)) that affects the posterior or lateral SC columns throughout their 

length; (ii) intramyelinic and interstitial edema of th ewhite matter of the CNS 

(especially the SC) [43-46]; and (iii) reactive astrogliosis [43, 45-46]. The 

most consistent magnetic resonance imaging finding is a symmetrical 

abnormally increased T2 signal intensity.This abnormality is related to 
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demyelination or intramyelin edema and confined to posterior or posterior and 

lateral columns in the cervical and thoracic SC [19, 47]. In acute and severe 

cases, the SC might also present as swollen and involvement of anterior 

columns has also occasionally been reported [19]. 

Histopathological lesions, similar to those in the SC, have been seen more 

rarely in brain white matter (i.e. leukoencephalopathy) [48-50]. In some 

patients, fluid attenuated inversion recovery and T2-weighted images 

demonstrate extensive areas of a high-intensity signal in the periventricular 

white matter [19]. 

Recent studies have also investigated a low Cbl status as a modifiable 

cause of brain atrophy [51]. 

Peripheral neuropathy (also called polyneuropathy) is another of the main 

neuropathological consequences of Cbl deficiency [52, 53]. The 

histopathological and ultrastructural hallmarks are intramyelinic and 

interstitial edema and gliosis [54, 55]. Cbl deficiency also leads to 

electrophysiological abnormalities in the peripheral nervous system [52, 53, 

56].  

In the CNS and peripheral nervous system, myelin sheaths seem to be 

more severely involved than the axons, and no axons devoid of myelin or any 

ultrastructural evidence of new myelin deposition occurring simultaneously 

with myelin lysis have been observed [49]. Only optic nerve fibers are often 

spared in patients with neuropathy due to Cbl deficiency [57]. Neurons do not 

seem to be structurally affected by Cbl deficiency. With reference to the above 

mentioned subject, some authors classified the neuropathy due to Cbl 

deficiency as a pure myelinolytic disease with no apparent loss of myelin [49, 

58].  

Moreover, no histopathological signs of inflammation or apoptosis have 

been observed in CNS of patients who have died with Cbl-D neuropathy [59]. 

The typical neurologic manifestations of the neuropathy due to Cbl 

deficiency are: (i) myelopathy with or without an associated neuropathy; (ii) 

optic neuropathy; and (iii) paresthesias without abnormal signs [60]. Optic 

neuropathy occurs only occasionally in adult patients. Optic nerve disease is 

characterized by symmetric, painless and progressive visual loss. Central and 

centrocecal scotomas are the main ophthalmologic findings [19]. 

The neurologic features typically include a spastic paraparesis or 

tetraparesis, extensor plantar response and impaired perception of position and 

vibration. The involvement of the posterior and lateral columns of the cervical 

and upper dorsal parts of the SC is responsible for the impairment of position 

sense, paraparesis and tetraparesis [19]. Almost all patients have loss of 



Elena Mutti and Alessandra Colciago 100 

vibratory sensation, often associated with diminished proprioception and 

cutaneous sensation and Romberg sign [19]. Accompanying peripheral nerve 

or rarely optic nerve involvement may be present [60]. 

The neuropsychiatric manifestations of Cbl deficiency include personality 

change, psychosis, emotional lability, and rarely delirium or coma [41, 57, 61]. 

Reported symptoms of psychosis include suspiciousness, persecutory or 

religious delusions, auditory and visual hallucinations and disorganized 

thought-processes [19]. 

Cbl deficiency has also been negatively correlated with cognitive 

functioning in healthy elderly subjects. Symptoms include slow mentation, 

memory impairment, and attention deficits [19]. 

Other neurologic manifestations possibly related to Cbl deficiency include 

cerebellar ataxia, orthostatic tremors, myoclonus, ophthalmoplegia, catatonia, 

vocal cord paralysis, a syringomyelia-like distribution of motor and sensory 

deficits, and autonomic dysfunction [60]. Fatigue, irritability, and lethargy are 

also reported in some patients.  

The clinical features of the Cbl deficiency polyneuropathy are similar to 

those of a cryptogenic sensorimotor polyneuropathy [60]. Cryptogenic 

sensorimotor polyneuropathy is characterized by decreased or lost 

proprioception or sense of vibration and loss of ankle jerks [62]. The onset of 

symptoms is in the hands with concomitant involvement of upper and lower 

limbs.  

Separate discussion is necessary for neurological diseases not etiologically 

linked to Cbl deficiency, but possibly with an abnormality in Cbl levels. In 

fact, some studies have reported an association between Cbl deficiency and 

diverse neurodegenerative processes (for a review see [63]). We will focus our 

attention on the more investigated: multiple sclerosis and Alzheimer‘s disease.  

The debate concerning the possible role of Cbl in multiple sclerosis is 

long-lasting, and the results are still conflicting. In fact, although the majority 

of patients with multiple sclerosis do not have confirmed Cbl deficiency, a 

subgroup of patients share the association of both disorders (for a review see 

[64]). Moreover, a recent meta-analysis revealed that individuals with multiple 

sclerosis tend to have significantly lower serum Cbl levels respect to the 

controls [65]. Patients with multiple sclerosis and lower Cbl level present 

prolonged visual and posterior tibial somatosensory and evocate potential 

latencies respect to patient with multiple sclerosis and normal Cbl level [66]. 

Finally, combination therapy with interferon-ß plus Cbl greatly improved 

both the clinical and histopathological pictures of an experimental model of 

multiple sclerosis [67]. 
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Viceversa, Scalabrino et al. demonstrated that Cbl levels are increased in 

cerebrospinal fluid of multiple sclerosis patients with relapsing–remitting and 

secondary-progressive clinical courses, but unchanged in those with the 

primary-progressive clinical course [68]. 

The pathological significance of the abnormal Cbl levels in multiple 

sclerosis remains a matter of speculation [68, 69] as well as the interpretation 

of conflicting results.  

Some studies reported low serum Cbl levels in patients with Alzheimer‘s 

disease [70-73] but the clinical relevance of the association between low Cbl 

levels and Alzheimer‘s disease is untilnow not completely known. 

It has been hypothesized that the associations between Cbl and some 

neurodegenerative disorders which are strongly represented by increased 

homocysteine levels, such as Alzheimer‘s disease, reflect the effects of chronic 

cerebral oxidative stress, effectively resulting in B vitamin depletion [63]. 

Other authors reported a greater basal production of interleukin(IL)-6 in 

Alzheimer‘s disease patients who had low Cbl level compared to normal Cbl 

counterpart. It suggests that IL-6 abnormality could be implicated in the 

pathogenesis of Alzheimer‘s disease [74] 

 

 

Hematological Effects 
 

Clinical hematological presentation of Cbl deficiency ranges from 

incidental increased mean corpuscular volume and neutrophils hyper-

segmentation in otherwise asymptomatic patients to symptoms due to severe 

anemia, such as angor, dyspnea on exertion, fatigue or symptoms related to 

congestive heart failure, such as ankle edema, orthopnea and nocturia [19]. 

The bone marrow of Cbl-D patients shows characteristic megaloblastic 

erythroblasts and giant metamyelocytes (early granulocyte precursors) [75]. 

Megaloblastosis represents a unique morphological and functional aberration 

of erythropoiesis [76]. 

The biochemical characteristic of the abnormal erythroblasts (called 

megaloblasts) is a defective DNA synthesis. Defective DNA synthesis leads to 

disparity in nuclear-cytoplasmic asynchrony and Cbl-D cells slowly divide 

until mature daughter cells die in the marrow or are arrested at various stages 

of the cell cycle [76]. 

In fact, in physiological conditions the eukaryotic cell cycle consists of 

four distinct phases: G1 (Gap1) phase, S phase (synthesis), G2 (Gap2) phase 

(collectively known as interphase) and M phase (mitosis). M (mitosis) phase is 
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itself composed of two tightly coupled processes: mitosis, in which the cell's 

chromosomes are divided between the two daughter cells, and cytokinesis, in 

which the cell's cytoplasm divides in half forming distinct cells. In normal cell 

cycle most of the cells are in G1 phase and present a quantity of DNA equal to 

2N (where N is the amount of DNA in the haploid genome) while only a few 

number of cells (in S and G2 phase, before mitotic division) have a DNA 

amount equal to 4N. Instead, in patients with megaloblastic anemia, 

erythroblast stops duplication in S phase and so presents a double quantity of 

DNA (4N).  

It is interesting to note that although megaloblastic changes are most 

striking in the bone marrow and peripheral blood, many other proliferating 

cells (epithelial cells lining the gastrointestinal tract, epithelial cells pertaining 

to the female genital tract) may exhibit megaloblastic features.  

Although the opinion of the scientific community is not unanimous, two 

principal mechanisms of impairment of DNA synthesis have been proposed: 

the "methylfolate trap hypothesis" and the "formate starvation hypothesis" (for 

detail see [77]).  

The megaloblast nuclei are wider than those of normoblasts and chromatin 

is abnormally dispersed due to a delayed condensation. Chromosomal 

abnormalities such as excessive stretching, random breakage, elongation and 

despiralization (unwinding) [76] may be present in megaloblasts. In addition, 

the nucleus may be located eccentrically and may exhibit indentations and/or 

karyorrhexis. 

The blood film shows oval macrocytes (macrocytosis is a rise in the mean 

cell volume of red cells above the normal range (in adults 80­100 fl)) and 

hypersegmented neutrophil nuclei (with six lobes) [75, 78, 79] (see Figure 1). 

Also an abnormal degree of variation in the shape of the erythrocytes in 

blood (anisocytosis and poikilocytosis) has been reported [19], in particular 

teardrop poikilocytes are quite common [80, 81] (see Figure 1). Schistocytes, 

howell-Jolly bodies and Cabot rings have also been identified in blood [81-

83]. Howell-Jolly bodies are small fragments of DNA whilst Cabot rings are 

unusual oval or figure-eight shaped inclusions of unclear origin. 

Most of the megaloblastic progenitor erythroid cells die in the bone 

marrow and macrophages effectively scavenge them, leading to ineffective 

intramedullary erythropoiesis [19, 84, 85]. Moreover, advanced megaloblastic 

anaemia has also a poorly understood component of intravascular hemolysis 

responsible for the short survival of red cells transfused into Cbl-D  

patients [86-88].  
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Figure 1. Representative picture of smear of peripheral blood from Cbl-D patients. The 

image deliberately emphasizes the presence and the salient features of the typical cells 

from a Cbl-D status (i.e., oval macrocytes, hypersegmented neutrophil nuclei, teardrop 

poikilocytes, and schistocyte). Picture is kindly drawn by Mr. Andrea Zadra. 

Megakaryopoiesis may be involved, with hypersegmented nucleus and 

liberation of fragments of cytoplasm, generating ―giant platelets‖ in the 

peripheral blood. However, platelet production and release are impaired, and 

as a result, various degrees of thrombocytopenia could occur [19]. Impaired 

platelet aggregation to adenosine diphosphate, collagen, epinephrine and 

ristocetin was also found in some patients with nutritional Cbl deficiency [89]. 

 

 

Effects on Immune System 
 

Almost all nutrients in diet play a crucial role in maintaining an ―optimal‖ 

immune response, so that deficient and excessive intakes can have negative 

consequences on immune status and susceptibility to a variety of pathogens. 

Although just few studies have examined the relationship between Cbl and 

immune response, Cbl-defiency looks to have an immunomodulator effect for 

cellular immunity. 

In severe cases, the white cell count and platelet count fall (pancytopenia) 

[75]. In particular, decreases in the number of lymphocytes and CD8
+
 cells and 

in the proportion of CD4
+
 cells, an abnormally high CD4/CD8 ratio, and 
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suppressed NK cell activity were noted in Cbl-D patients compared with 

control subjects [90]. All of these parameters were normalized after treatment 

with methylCbl (MeCbl) [90]. These results were confirmed in a study on 

patients with pernicious anemia before and after cyanoCbl treatment reporting 

that after treatment, absolute numbers and percentage of lymphocyte 

subgroups were elevated, as well as the levels of C3, C4, and 

immunoglobulins [91]. 

The elevation of the CD4/CD8 ratio by Cbl deficiency was also confirmed 

in rats and mice [92, 93]. In the same experimental group of Cbl deficiency it 

was also observed a decrease in the serum C3, IgM and IgG concentrations 

[92, 93]. Instead, in a recent in vivo study, it has been observed a significant 

decrease in the NK cytotoxicity in the spleen of Cbl-D group respective to the 

control group. Furthermore, in the same group of rats, it has been observed a 

significant decrease in the B lymphocyte (CD45RA) subsets but not for 

lymphocyte subsets helper T cells, cytotoxic-supressor T cells, matureT cells 

and natural killer cells. Consequently, it seems that Cbl deficiency decreases 

both B-cell diversity and NK activity [94]. 

Finally, it has been demonstrated in in vitro studies that MeCbl blocks the 

production by T lymphocytes of several cytokines (IL-6, interferon-γ, and IL-

1ß) [95] and augments the proliferation of T cells in response to Concavalin A 

and autologous B cells [96]. 

More studies are necessary to clarify the exact role of Cbl in immune 

system. 

 

 

Effect on Cardiovascular System 
 

To the best of our knowledge, very few studies were carried out in order 

to test the direct effect of Cbl deficiency on cardiac structure. 

Moreover, a recent systematic review of cohort studies has highlighted 

much heterogeneity in the few results of the association between blood Cbl 

levels and risk of cardiovascular diseases in adulthood [97]. 

In patients with Cbl deficiency it has been demonstrated an association 

with impairment of global and segmental myocardial deformation [98], low 

left ventricular ejection fraction [99] and, only in a patient, orthostatic 

hypotension [100]. Autoimmune pernicious anemia was identified as a cause 

of collapse, and heart failure in a young patient [101]. In Cbl-D sheep, a 

gelatinous edema was observed in the auricular-ventricular region of the heart 

and the right and left auricles were partially atrophied with presence of 
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hemorrhagic suffusion by cellular infiltrates of neutrophilic and eosinophilic 

granulocytes in connective tissue [102]. In Cbl-D rats, the hearts were 

characterized by large areas of white fibrotic streaks, marked reduction in 

muscle fiber mass and enlarged mitochondria [103]. Otherwise, another study 

has shown that fractional shortening, left ventricular dimension at end-diastole 

and end-systole, posterior wall thickness, and perivascular collagen level, were 

comparable in Cbl-D rats and controls but interstitial collagen (an indicator of 

cardiac remodelling and fibrosis) and brain natriuretic peptide-45 plasma 

concentration exhibited a trend to be lower in Cbl-D animals [104]. 

Some studies have assessed the prevalence of Cbl deficiency in patients 

with cardiovascular disorders. In patients with coronary heart disease it has 

been reported a percentage of Cbl deficiency between 22 [105]-45% [106] and 

in Indian subjects even 86.7% [107]. Cbl deficiency was also associated to 

venous thrombosis [108]. 

In a study on patients hospitalized for cardiovascular disease, low Cbl 

concentrations were found in 33% of patients, with a different incidence for 

different reasons for hospitalization [109]. The highest frequency was reported 

for patients with angina pectoris and myocardial infarction. 

Even if partially outside the scope of this chapter, a short digression on the 

use of Cbl in prevention of cardiovascular disorders is also included, citing 

only a limited number of the most recent studies. In the so-called 

―homocysteine-lowering B vitamin therapy‖ Cbl is administered (or 

introduced by fortified food) in combination with folic acid and/or vitamin B6 

in order to decrease the homocysteine level, a suspected etiological factor for 

atherosclerosis. Obviously, in a combined therapy is hard to define the exact 

functions of each treatment (i.e., the precise role of Cbl) and, moreover, the 

scientific community is not unanimous on the effectiveness of the 

―homocysteine-lowering B vitamin therapy‖. 

Some studies suggested that vitamin B supplementation is associated with 

lower levels of blood pressure [110], increased maximal coronary blood flow 

[111], improvement in coronary flow reserve [112] and reduced progression of 

early-stage subclinical atherosclerosis [113]. Otherwise some clinical trials 

have failed to show a benefit of B vitamin therapy in reducing composite 

outcomes of cardiovascular death, myocardial infarction, and stroke [114-

116]. Some recent reviews suggested that some confounding factors may 

trouble the interpretation of the negative results, i.e., statin/aspirin therapy 

[117], folic acid fortification [117], age [118], and renal function [119].  

According to above-mentioned contents, we believe that further 

investigations are needed to determine the effective role of Cbl in the 
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physiology of cardiovascular system, also in order to clarify some ambivalent 

results of the vitamin substitution therapy. 

 

 

Effects on Digestive System 
 

Some confusion exists whether some abnormalities in the digestive system 

are a cause or an effect of Cbl deficiency. It is well known that stomach and 

intestine play a major role both in the Cbl absorption than in the pathogenesis 

of Cbl deficiency (i.e., pernicious anemia, Imerslund-Grasbeck syndrome) (see 

chapters ―Vitamin B12 absorption and transport in mammals‖ and ―Causes of 

vitamin B12 deficiency‖) but changes in stomach and intestine due to Cbl 

deficiency have received less emphasis in the literature. 

Studies have demonstrated that a normal endoscopic appearance was not 

correlated with Cbl status but atrophic gastritis was more common in the Cbl-

D patients [120-121]. In some patients it is possible to observe with 

endoscopic examination a loss in the folds of gastric mucosa and its thinning. 

Gastric emptying times were prolonged in patients with Cbl deficiency 

and this prolongation was partial corrected after Cbl replacement  

therapy [122]. Mucosal morphology and enzyme activities (dipeptidas and 

disaccharides) were studied in the intestine of Cbl-D patients. The villi were 

generally shorter than in control with demonstrated malabsorption of some 

nutrients [123-124]. In some of patients the disaccharide (maltase, isomaltase, 

sucrose, trehalase, and lactase) and L-alanyl-L -proline dipeptidase activity 

were depressed [124]. 

Biochemical and ultrastructural changes were also observed in liver of 

Cbl-D men and animals [125]. Cbl deficiency results in increased activity of 

the enzymes of fatty acid synthesis, such as acid synthetase and acetyl-CoA 

carboxylase. It has also been demonstrated that in the livers from Cbl-D 

animals there are an increased activity of the enzyme citrate synthase and 

increased mitochondrial cristae membranes [125]. 

Human data on abnormal hepatic metabolism of lipid look to be 

confirmed in ovine, where a Cbl deficiency is associated to a hepatic 

dysfunction called ―ovine white liver disease‖ and characterized by pale, 

swollen, friable fatty livers, and showed marked accumulation of triglyceride 

and free fatty acid [126, 127]. 

Several experimental studies have demonstrated that Cbl has an 

hepatoprotective effect on different types of liver injured, such as 

dimethylnitrosamine-induced liver injury, arsenic intoxication or liver injury 
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by carbon tetrachloride [128-130]. Cbl administration to rat subject to partial 

hepatectomy normalized in four days the total lipid content and induced a 

more rapid true regeneration of liver (restoration of the dry fat free liver 

weight) [131]. Conversely, it is interesting to note that also 

hypercobalaminemia (high serum Cbl levels) is associated with etiologically 

different liver diseases [132, 133]. In fact, high serum Cbl levels were 

observed in some patients affected by acute and chronic liver diseases, 

although the exact pathophysiological mechanisms are not yet known [132, 

133]. It has been considered that hypercobalaminemia may be an indicator of a 

functional deficit with clinical consequences paradoxically similar to those of 

Cbl deficiency [133]. 

A wide range of oral signs and symptoms may appear in Cbl-D patients as 

a result of basic changes in the metabolism of oral epithelial cells [134, 135]. 

The reported oral symptoms include a burning sensation, pruritus, lingual 

paresthesia, red tongue with erythematous macular lesions, recurrent 

ulcerations, reduced taste sensitivity and generalized sore mouth [134-136] 

(see Figure 2).  

 

 

Figure 2. Clinical photographs of patients with oral lesions from Cbl deficiency. 

Lesions involve the anterior portion of the tongue in A and B (arrows) and the mucosa 

of the right cheek in C (head of arrow). Photos are kindly provided by Dr. Gianluigi 

Caccianiga (University of Milan-Bicocca). 
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Some authors suggested that oral lesions are the initial symptoms of a Cbl-

D status, and so the dentist, who is often consulted first, should have a prime 

opportunity and responsibility to contribute to diagnosis [134, 136]. 

Patients with atrophic glossitis had a significantly higher frequency of Cbl 

deficiency than healthy control subjects [137]. Atrophic glossitis is manifested 

as partial or complete loss of filiform papillae on the dorsal surface of tongue 

and is characterized by ephitelial atrophy and varying degree of chronic 

inflammation in the subephitelial connective tissue.  

 

 

Role of Cbl in Cancer 
 

The classical theory of the multi-step process of cancerogenesis states that 

cancer results from the accumulation of mutations in oncogenes and tumor 

suppressor genes in neoplastic transforming cells. In the last decade, this 

theory has been largely revised following the observation that epigenetic 

modifications of several genes occurs in the genome of transforming cells, 

altering gene expression without affecting DNA sequence [138]. Therefore, 

the current opinion is that human cancer is the consequence of the 

accumulation of both mutations and epigenetic modifications of specific genes 

involved in the control of cell proliferation, adhesion and migration [139]. 

Methylation of DNA, modification of histones, and interfering microRNA 

(miRNA) collectively represent a group of epigenetic elements dysregulated in 

cancer. 

Targeting the epigenome with compounds that modulate DNA 

methylation, histone marks, and miRNA profiles represents an evolving 

strategy for cancer chemoprevention, and these approaches are starting to 

show promise in human clinical trials [139]. 

Emerging evidence suggests that nutritional status plays an important role 

in etiology and pathogenesis of cancer by causing and/or enhancing tumor 

development, or by preventing and/or inhibiting tumorigenesis [140, 141]. 

This is supported by a plenty of epidemiological data showing positive or 

negative correlations between nutrients intake and human cancer incidence 

[142]. A lot of literature has been devoted to uncover the mechanisms 

underlying dietary components effects and many data refer to epigenetic 

modification of genes strictly connected with tumor development. Indeed, old 

evidence [143] demonstrated that a chronic deficiency of the major dietary 

methyl group donors – methionine, choline, folic acid and Cbl – can induce 

the development of cancer in different tissues in rodents. Over the years, a 
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number of comprehensive studies have demonstrated that diets lacking methyl 

donors may act as co-carcinogens [144, 145] and, more importantly, as 

complete carcinogens that can induce tumor formation in the absence of any 

exogenous carcinogens. This is especially true for human liver [144], prostate 

[146], colorectal cancer [147] and to a lesser degree, breast carcinoma [148].  

DNA methylation represents one of the best studied epigenetic processes 

in cancer [139]: it consists in the addition of a methyl group to carbon 5 of the 

cytosine within the dinucleotide CpG. DNA methyltransferases are the key 

enzymes for DNA methylation while S-adenosylmethionine represents the 

methyl group donor. The synthesis of S-adenosylmethionine requires the one-

carbon units provided by folate metabolism, better known as one-carbon 

metabolism. 

DNA methylation is necessary for controlling gene expression of tissue-

specific, housekeeping or imprinted genes and also for maintaining genomic 

stability. In cancer, hypomethylation usually occurs at repeated DNA 

sequences, enhancing DNA instability and gene expression [149]; on the 

contrary, specific methylation of CpG islands in the promoter region of a gene 

is commonly associated with gene silencing by inducing chromatin 

conformational modifications inhibiting the access of the transcriptional 

machinery [149]. 

Dietary methyl donors have their impact on carcinogenesis through their 

role in providing one-carbon moieties for the synthesis of nucleotides and of 

S-adenosylmethionine, the universal donor for nearly all methylation 

reactions, including that of DNA [150]. Related to their role as one-carbon 

donors, deficiencies of folate, Cbl and possibly other related nutrients are 

reported to cause epigenetic instability by promoting genomic 

hypomethylation and the seemingly paradoxical hypermethylation of specific 

gene promoters [150]. 

As previously mentioned, both genomic and gene-specific DNA 

methylation patterns in various tissues have been shown to be sensitive to one-

carbon nutrient availability. During mammalian embryogenesis, DNA 

methylation patterns are highly labile and experience a wave of genome-wide 

demethylation, followed by a period of controlled and precise remethylation 

[151]. Therefore, the integrity of the developing epigenome may be especially 

sensitive to fluctuation in one-carbon nutrient and methyl group supply during 

this early stage of life. Beside the adult life, also childhood and infancy and 

especially the in utero life are, indeed, critical window of time during which 

cancer risk may be modified by diet. Recent experimental and epidemiological 

data suggest that maternal intake of dietary methyl donors during gestation 
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may have an impact on the risk of cancer in offspring later in life [see 149 for 

a review]. For example, maternal multivitamin use has been related to a 

reduced incidence in their children of acute lymphocytic leukemia [152], 

pediatric brain tumors [153] and neuroblastoma [154].  

Current literature is nowadays lacking a deep meta-analysis of the real 

efficacy of a Cbl supplementation in maternal diet towards the risk of 

developing cancer in offspring; moreover, the association between maternal 

one-carbon intake and cancer in offspring have been limited to cancer that 

affect children.  

No epidemiological evidence is now available to support or refute the idea 

that maternal one-carbon nutrient intake can impact the risk of developing 

adult cancer, as those of the colorectum or breast.  

 

 

CONCLUSION 
 

Alongside to traditional effects on the nervous and hematopoietic systems, 

new Cbl roles are emerging. The Cbl effect in the intrauterine period and first 

months of life is just one of the topic. Other aspects are the importance on the 

defence system, as well as the complicated interpretation on the gastric system 

and the role in cancer. 

On light of the above, a deep study and knowledge of all possible effects 

of Cbl are necessary in order to recognize all Cbl-D situations and go with a 

correct therapeutic approach. Just to name one, the availability of dietary 

compounds modulating DNA methylation, as Cbl, might be an alternative 

method to control epigenome in cancer or might represent a useful tool for 

cancer prevention. 
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ABSTRACT 
 

Vitamin B12 (cobalamin (Cbl)) deficiency is a common pathological 

condition in people with impaired Cbl assumption due to diet (vegans), 

pernicious anemia or gastric surgery. Specific therapeutic protocols are 

available according to severity of the disease and to clinical 

hematological and/or neurological consequences. In this Chapter, the 

available Cbl formulations (intramuscolar or oral), the range of doses 

used in different clinical conditions and some specific recommendations 

for drugs interaction and for specific clinical conditions will be treated. 
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INTRODUCTION 
 

As previously discussed (see Chapter ‖Pathological Effects of vitamin B12 

deficiency‖), anemia, cardiovascular disorders and permanent neurologic 

damage are the main adverse health effects of Cbl deficiency. As humans 

depend on exogenous sources of Cbl (see ―Food source of vitamin B12‖), 

people consuming diets completely free of animal products (vegans) as well as 

those with pernicious anemia (i.e., malabsorption) are at a greater risk of 

developing Cbl deficiency [1]. 

For people with deficiency, the dose of Cbl required varies by severity. 

The daily requirement of Cbl has been set at 2.4 μg [2], but higher amounts — 

4 to 7 μg per day — which are common in persons who eat meat or take a 

daily multivitamin, are associated with lower methylmalonic acid values (the 

levels of methylmalonic acid are markedly elevated in the vast majority 

(>98%) of patients with clinical Cbl deficiency) [3]. However, most patients 

with clinical Cbl deficiency have malabsorption and will require parenteral or 

high dose oral replacement. For these reasons, on average 1,000 μg/day is 

recommended. 

Different nutritional guidelines for Cbl intake have been established and 

published for people with different causes and degrees of Cbl deficiency: 

general population must refer to the guidelines published by the Food and 

Nutrition Board [2]. Nutritional guidelines for vegetarians come from the 

American Dietetic Association [4], while there are no recommendations from 

the American Society of Hematology for the diagnosis and treatment of Cbl 

deficiency. The American Academy of Neurology recommends measurements 

of Cbl, methylmalonic acid and homocysteine in patients with symmetric 

polyneuropathy [5]. 

Cbl is available for injection or oral administration; combinations with 

other vitamins and minerals also can be given orally or parenterally. As it will 

be deeply discussed further in this Chapter, the choice of one or the other 

preparation always depends on the cause of the deficiency. Generally, oral 

preparations should be avoided in patients with a marked deficiency of Cbl 

leading to abnormal hematopoiesis or neurological deficits and in patients with 

lack of intrinsic factor (IF) or ileal disease; therefore, Cbl is preferentially 

administered by intramuscular or subcutaneous injection. 
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INJECTED VITAMIN B12 

 

There are many recommended schedules for injections of Cbl 

(cyanocobalamin (CNCbl) in the United States and hydroxocobalamin 

(HOCbl) in Europe) according to the age of the patients, to the severity of 

symptoms and to the cause of the deficiency.  

The range of CNCbl administered doses is 1-1000 μg. Doses >100 μg are 

rapidly cleared from plasma into the urine, and administration of larger 

amounts of Cbl will not result in greater retention of the vitamin [6]. Anyway, 

about 10% of the injected dose (100 of 1000 μg) is retained. 

CNCbl injection is safe when given by the intramuscular or deep 

subcutaneous route, but it should never be given intravenously. There have 

been rare reports of transitory exanthema and anaphylaxis after injection [7,8]. 

If a patient reports a previous sensitivity to injections of CNCbl, an 

intradermal skin test should be performed before the full dose is administered.  

HOCbl is the drug of choice to treat Cbl deficiency in Europe. Current 

clinical practice within the UK is to treat Cbl deficiency with HOCbl in the 

intramuscular form [outlined in 9]. Standard initial therapy for patients without 

neurological involvement is 1000 μg intramuscularly three times a week for 2 

weeks. Patients presenting with neurological symptoms should receive 1000 

μg intramuscularly on alternate days until there is no further improvement, 

reviewing the need for continuation of alternate day therapy after 3 weeks of 

treatment [10]. Moreover, it has been reported that HOCbl, given in doses of 

100 μg intramuscularly, have a more sustained effect than CNCbl, with a 

single dose maintaining plasma Cbl concentrations in the normal range for up 

to 3 months. However, some patients show reductions of the concentration of 

Cbl in plasma within 30 days, similar to that seen after CNCbl.  

HOCbl is generally well tolerated, though side effects include itching, 

exanthema, chills, fever, hot flushes, nausea and dizziness; in the past, the 

administration of HOCbl was exceptionally associated with anaphylaptic 

reaction probably due to hypersensitivity to cobalt or any of the other 

components of the medication [7].  

Due to cross-sensitivity of HOCbl and CNCbl, treatment of patients may 

be a challenge. Skin patch testing may help to choose an appropriate product 

[11]. If absolutely necessary, treatment may be considered under 

hydrocortisone cover in a hospital setting where severe hypersensitivity can be 

managed. 
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ORAL VITAMIN B12 PREPARATIONS 
 

A wide discussion on the pros and cons of oral versus parental 

administration of Cbl in patients with different degree of Cbl deficiency is 

present in the recent literature: key point are not only the efficacy of the 

formulation and the improvements of clinical signs and symptoms, but also the 

cost of the therapy and the patient compliance. To this regard, a Cochrane 

review considering clinical trials about the use of oral Cbl suggests that oral 

therapy is as effective as intramuscular Cbl, with the benefit for patients of 

fewer visits to health centres and reduced discomfort of injections [12]. On the 

other hand, proponents of parenteral therapy state that compliance and 

monitoring are better in patients who receive this form of therapy because they 

have frequent contacts with health care providers [13]. In the following 

paragraphs, a review of the main concepts on this topic will be provided.  

 

 

High Dose Oral Treatment 
 

High dose oral CNCbl (1000–2000 μg) is licenced for use in several 

countries except the UK; as it is widely available also via the internet, this 

treatment is increasingly popular. Passive, IF-independent absorption of a 

small fraction (0.5 - 4%) of such large doses should suffice to meet daily 

requirements and might be useful for patients with pernicious anemia, as 

demonstrated in an old study [14]. Indeed, oral doses of 1000 μg are able to 

deliver 5 to 40 μg, even if taken with food.  

Data from the literature concerning the efficacy of oral treatment are not 

conclusive. Some data suggest that, in patients with pernicious anemia, 

atrophic gastritis, or a history of ileal resection, high daily oral doses (2000 μg 

daily) of CNCbl produce similar reductions in the mean corpuscular volume, 

increases in the hematocrit and improvement of memory loss compared to 

parental therapy (seven injections of 1000 μg of CNCbl over a period of 1 

month, followed by monthly injections) [15]. The markers of Cbl efficacy 

were significantly better in patients treated with oral formulations. In a 

randomized trial comparing oral with intramuscular CNCbl (1000 μg doses, 

daily for 10 days, then weekly for 4 weeks, and monthly thereafter), the two 

groups had similar improvements in hematologic abnormalities and Cbl levels 

at 90 days [16]. As a general, in severely deficient individuals who have poor 

absorption especially due to pernicious anemia, the use of oral Cbl in initiation 

of Cbl therapy is not recommended. High dose oral Cbl would be a reasonable 
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alternative as maintenance in patients unable to tolerate intramuscular 

injections [13]. Moreover, it is important to remember that data are lacking 

from long-term studies to assess whether oral treatment is effective when 

doses are administered less frequently than daily. 

 

 

Low Dose Oral Treatment 
 

Low doses oral CNCbl (50 μg) are now available and may improve serum 

Cbl and biochemical markers in borderline cases. Their role in the treatment of 

subclinical deficiency is under active research, but lacks of definitive approval. 

Therefore, care must be taken if low dose supplements are prescribed, as a 

latent and emerging pernicious anemia together with neurological impairments 

could be underestimated [10]. 

 

 

THERAPEUTIC USES 
 

As already stated, the therapeutic approach depends on the severity of the 

patient's illness. In uncomplicated pernicious anemia, characterized by a mild 

or moderate anemia without leukopenia, thrombocytopenia, or neurological 

signs or symptoms, the administration of Cbl alone will suffice. It is important 

to exclude other causes of megaloblastic anemia and to provide sufficient 

studies of gastrointestinal function before starting therapy. In this situation, 

small amounts of parental Cbl (1-10 μg per day) may be useful [13]. It is 

important to notice that treatment of pernicious anemia is lifelong. This fact 

must be impressed on the patient and family, and a system must be established 

to guarantee continued monthly injections of Cbl. In patients in whom Cbl 

supplementation is discontinued after clinical recovery, neurologic symptoms 

recur within as short a period as 6 months and megaloblastic anemia recurs in 

several years [17]. Intramuscular injection of 100 μg of CNCbl every 4 weeks 

is sufficient to maintain a normal concentration of Cbl in plasma and an 

adequate supply for tissues [13].  

Patients with severe neurological symptoms and signs may be treated with 

larger doses of Cbl in the period immediately after the diagnosis. Doses of 100 

μg per day or several times per week may be given for several months with the 

hope of encouraging faster and more complete recovery [18]. Cbl must be 

monitored in plasma and peripheral blood counts must be obtained at intervals 

of 3-6 months to confirm the adequacy of therapy. These evaluations must 
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continue throughout the patient's life as refractoriness to therapy can develop 

at any time. 

For those patients presenting with Cbl deficiency, but with no nervous 

system involvement, intranasal preparations of Cbl are suitable for maintenance 

of Cbl levels, following normalization [19, 20]. 

When neurological changes or severe leukopenia or thrombocytopenia 

associated with infection or bleeding are present (Acutely Ill Patient), 

emergency treatment is required. The older individual with a severe anemia 

(hematocrit <20%) is likely to have tissue hypoxia, cerebrovascular 

insufficiency and congestive heart failure. In all these cases, it is not useful to 

delay therapy to wait for a detailed diagnosis. Once the megaloblastic 

erythropoiesis has been confirmed and sufficient blood collected for later 

measurements of Cbl and folic acid, the patient should receive intramuscular 

injections of 100 μg of CNCbl several times per week for 1 to 2 weeks, 

together with a daily oral supplement of 1 to 2 mg of folic acid. Then therapy 

is administered weekly until clear improvement is shown, followed by 

monthly injection [13]. Because an effective increase in red-cell mass will not 

occur for 10-20 days, the patient with a markedly depressed hematocrit and 

tissue hypoxia also should receive a transfusion of 2-3 units of packed red 

blood cells [21]. Patients usually report an increased sense of well-being 

within the first 24 hours of the initiation of therapy, but full recovery of mental 

function may take months, or it may never occur; this is especially true for 

defects present for many months or years. The first objective sign of therapy 

efficacy is the disappearance of the megaloblastic morphology of the bone 

marrow. Full correction of precursor maturation in marrow with production of 

an increased number of reticulocytes begins about the second or third day and 

peaks 3-5 days later. The rate of recovery of the hematocrit is strictly related to 

the ability of the marrow to sustain a high rate of production [13] and to the 

presence of other pathological conditions.  

 

 

SPECIAL RECOMMENDATION 
 

Metformin. Treatment with metformin in type II diabetes is associated 

with reduced serum Cbl levels [22] as recently confirmed by a large clinical 

study comparing metformin-treated diabetics with diabetics not treated with 

metformin, or non-diabetics [23]; this effect is related to the dose and duration 

of treatment [24]. However, low serum Cbl levels in metformin treated 

patients seem not to be associated with biochemical dysbalances [25]; on the 
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contrary, it seems that despite a low serum Cbl, the intracellular Cbl 

metabolism is improved in patients taking metformin [25]. Available studies 

of metabolic profile in diabetics suggest that diabetics have a resistance to Cbl 

(that is: normal serum Cbl associated with elevation in its metabolic markers) 

and that metformin enhances Cbl uptake or metabolism [25].  

Oral contraception and Hormone replacement therapy. Oral contraceptive 

use causes a reduction in serum Cbl levels [26; 27], even if the effect is not 

significant when ‗low dose‘ oral contraception (20 μg ethinyl estradiol) is used 

[28]. The effect of hormone replacement therapy is not conclusive, given that 

both a reduction of Cbl [29] and no significant effect on Cbl levels [30] have 

been reported. However, a cross-sectional study of young women taking oral 

contraceptives did not show any biochemical evidence of impaired Cbl status 

despite a 25% reduction of serum Cbl [31].  

Pregnancy. The interrelationship between pregnancy and Cbl is known 

since many years: a dietary deficiency of Cbl during pregnancy is associated 

with significantly smaller size-at-birth [32] and, in turn, pregnancy causes a 

physiological reduction of total serum Cbl (30%) by the third trimester [33]. 

When serum Cbl is low and strong clinical suspicion of deficiency is present, 

the suggestion of pernicious anemia is consistent and mother should be treated 

as positive, while anti-IF antibodies are checked. In order to limit extensive 

investigation with resultant anxiety and to treat potential fetal deficiency, three 

injections of HOCbl are suggested to cover the pregnancy. Serum Cbl levels 

will be checked 2 months post-partum to ensure resolution to normal levels 

[10]. 

 

 

CONCLUSION 
 

Cbl has an undeserved reputation as a health tonic and has been used for a 

number of disease states. Effective use of the vitamin depends on accurate 

diagnosis and is based on the following general principles of therapy:  

 

 The relative ease of treatment with Cbl should not prevent a full 

investigation of the etiology of the deficiency, which should involve 

studies of dietary supply, gastrointestinal absorption, and transport. 

An immediate therapy, without a precise diagnosis, is needed only in 

acutely ill elderly patients. They may not be able to tolerate the delay 

in the correction of a severe anemia. 
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 Cbl should be given prophylactically only when there is a reasonable 

probability that a deficiency exists or will exist as, for example, in the 

strict vegetarian and in gastrectomized patients. When gastrointestinal 

function is normal, an oral prophylactic supplement of Cbl may be 

indicated. Otherwise, the patient should receive monthly injections of 

CNCbl. 

 Therapy should be as specific as possible: the available multivitamin 

preparations (rich of folic acid) can result in a hematologic recovery 

that masks continued Cbl deficiency and permit neurological damage 

to develop or progress. 

 

 

REFERENCES 
 

[1] Food and Agriculture Organization of the United Nations. Vitamin B12. 

Rome: World Health Organization, Food and Agriculture Organization 

of the United Nations. 2013. Apr 4. Chapter 5, Human Vitamin and 

Mineral Requirements: report of a joint FAO/WHO expert consultation, 

Bankok, Thailand. Available from: http://www.fao.org/docrep/004 

/Y2809E/y2809e0b.htm. 

[2] Institute of Medicine Food and Nutrition Board. Dietary reference 

intakes: thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, 

pantothenic acid, biotin and choline. Washington, DC: National 

Academies Press, 1998. 

[3] Savage DG, Lindenbaum J, Stabler SP, Allen RH. Sensitivity of serum 

methylmalonic acid and total homocysteine determinations for 

diagnosing cobalamin and folate deficiencies. Am. J. Med., 1994;96:239-

46. 

[4] American Dietetic Association, Dietitians of Canada. Position of the 

American Dietetic Association and Dietitians of Canada: vegetarian 

diets. J. Am. Diet Assoc., 2003;103:748-65. 

[5] England JD, Gronseth GS, Franklin G, Carter GT, Kinsella LJ, Cohen 

JA, et al. Practice parameter: the evaluation of distal symmetric 

polyneuropathy: the role of autonomic testing, nerve biopsy, and skin 

biopsy (an evidence-based review) —report of the American Academy 

of Neurology, the American Association of Neuromuscular and 

Electrodiagnostic Medicine, and the American Academy of Physical 

Medicine and Rehabilitation. PM&R 2009;1:14-22. doi: 

10.1016/j.pmrj.2008.11.011. 



Pharmacological Use of Vitamin B12 133 

[6] MacFarlane AJ, Shi Y, Greene-Finestone LS. High-dose compared with 

low-dose vitamin B-12 supplement use is not associated with higher 

vitamin B-12 status in children, adolescents, and older adults. J. Nutr., 

2014;144(6):915-20. doi: 10.3945/jn.113.190256.  

[7] Hovding G. Anaphylactic reaction after injection of vitamin B12. Br. 

Med. J., 1968; 3(5610):102. 

[8] Bilwani F, Adil SN, Sheikh U, Humera A, Khurshid M. Anaphylactic 

reaction after intramuscular injection of cyanocobalamin (vitamin B12): 

a case report. J. Pak Med. Assoc., 2005;55(5):217-9. 

[9] British National Formulary, BNF, http://www.medicinescomplete. 

com/mc/bnf/current/PHP5867-drugsused-in-megaloblastic-naemias.htm 

[10] Devalia V, Hamilton MS, Molloy AM. British Committee for Standards 

in Haematology. Guidelines for the diagnosis and treatment of 

cobalamin and folate disorders. Br. J. Haematol., 2014;166(4):496-513. 

doi: 10.1111/bjh.12959.  

[11] Heyworth-Smith D, Hogan PG. Allergy to hydroxycobalamin, with 

tolerance of cyanocobalamin. Med. J. Aust., 2002;177:162–163. 

[12] Vidal-Alaball J, Butler C, Cannings-John R, Goringe A, Hood K, 

McCaddon K et al. Oral Vitamin B12 versus Intramuscular Vitamin B12 

for Vitamin B12 Deficiency. John Wiley and Sons, Ltd. for The 

Cochrane Collaboration, 2009. Available from http://summaries. 

cochrane.org/CD004655/oral-vitamin-b12-versus-intramuscular-

vitaminb12-for-vitamin-b12-deficiency 

[13] Stabler SP. Clinical practice. Vitamin B12 deficiency. N Engl J Med. 

2013;368:149–160doi: 10.1056/NEJMcp1113996 

[14] Berlin H, Berlin R, Brante G. Oral treatment of pernicious anemia with 

high doses of vitamin B12 without intrinsic factor. Acta Med. Scand., 

1968;184:247-58. 

[15] Kuzminski AM, Del Giacco EJ, Allen RH, Stabler SP, Lindenbaum J. 

Effective treatment of cobalamin deficiency with oral cobalamin. Blood, 

1998; 92:1191-8. 

[16] Bolaman Z, Kadikoylu G, Yukselen V, Yavasoglu I, Baructa S, Senturk 

T. Oral versus intramuscular cobalamin treatment in megaloblastic 

anemia: a single center, prospective, randomized open-label study. Clin. 

Ther., 2003;25:3124-34. 

[17] Stabler SP. Megaloblastic anemias: pernicious anemia and folate 

deficiency. In: Young NS, Gerson SL, High KA, eds. Clinical 

hematology. Philadelphia: Mosby, 2006: 242-51. 



Alessandra Colciago 134 

[18] Andrès E, Fothergill H, Mecili M. Efficacy of oral cobalamin (vitamin 

B12) therapy. Expert Opin Pharmacother. 2010;11(2):249-56. doi: 

10.1517/14656560903456053. 

[19] Slot WB, Merkus FW, Van Deventer SJ, Tytgat GN. Normalization of 

plasma vitamin B12 concentration by intranasal hydroxocobalamin in 

vitamin B12-Deficient patients. Gastroenterology, 1997;113 (2):430-3. 

[20] Mijares Zamuner MB, González V, Abad Á, Perdiguero M, Picó A. 

Intranasal cyanocobalamin; an effective and safe therapeutic alternative. 

Nutr. Hosp., 2014;30(2):462-5. doi: 10.3305/nh.2014.30.2.7538. 

[21] Napolitano LM. Scope of the problem: epidemiology of anemia and use 

of blood transfusions in critical care. Crit. Care., 2004;8Suppl 2:S1-8. 

[22] Tomkin GH, Hadden DR, Weaver JA, Montgomery DA. Vitamin-B12 

status of patients on long-term metformin therapy. Br. Med. J., 1971;2 

(5763):685-7. 

[23] Reinstatler L, Qi YP, Williamson RS, Garn JV, Oakley GP Jr. 

Association of biochemical B12 deficiency with metformin therapy and 

vitamin B12 supplements: the National Health and Nutrition Examination 

Survey, 1999-2006. Diabetes Care, 2012;35:327–333.doi: 

10.2337/dc11-1582. 

[24] Ting RZ, Szeto CC, Chan MH, Ma KK, Chow KM. Risk factors of 

vitamin B12 deficiency in patients receiving metformin. Arch. Intern. 

Med., 2006;166:1975–1979. 

[25] Obeid R, Jung J, Falk J, Herrmann W, Geisel J, Friesenhahn-Ochs B, et 

al. Serum vitamin B12 not reflecting vitamin B12 status in patients with 

type 2 diabetes. Biochimie. 2013;95:1056-1061. doi: 10.1016/j. 

biochi.2012.10.028. 

[26] Wertalik LF, Metz EN, LoBuglio AF, Balcerzak SP. Decreased serum B 

12 levels with oral contraceptive use. JAMA, 1972;221:1371–1374. 

[27] Lussana F, Zighetti ML, Bucciarelli P, Cugno M, Cattaneo M. Blood 

levels of homocysteine, folate, vitamin B6 and B12 in women using oral 

contraceptives compared to nonusers. Thromb. Res., 2003;112:37–41. 

[28] Sutterlin MW, Bussen SS, Rieger L, Dietl J, Steck T. Serum folate and 

Vitamin B12 levels in women using modern oral contraceptives (OC) 

containing 20 microg ethinyl estradiol. Eur. J. Obstet. Gynecol. Reprod. 

Biol., 2003;107:57–61 

[29] Lacut K, Oger E, Abalain JH, Moineau MP, Mottier D. Effects of oral 

and transdermal 17 beta-estradiol combined with progesterone on 

homocysteine metabolism in postmenopausal women: a randomised 

placebo controlled trial. Atherosclerosis, 2004;174:173–180. 



Pharmacological Use of Vitamin B12 135 

[30] Carmel R, Howard JM, Green R, Jacobsen DW, Azen C. Hormone 

replacement therapy and cobalamin status in elderly women. Am. J. Clin. 

Nutr., 1996;64:856–859. 

[31] Riedel B, BjorkeMonsen AL, Ueland PM, Schneede J. Effects of oral 

contraceptives and hormone replacement therapy on markers of 

cobalamin status. Clin. Chem., 2005;51:778–781. 

[32] Wadhwani NS, Pisal HR, Mehendale SS, Joshi SR. A prospective study 

of maternal fatty acids, micronutrients and homocysteine and their 

association with birth outcome. Matern Child Nutr. 2013 Jun 25. doi: 

10.1111/mcn.12062.  

[33] Baker H, De Angelis B, Holland B, Gittens-Williams L, Barrett T Jr. 

Vitamin profile of 563 gravidas during trimesters of pregnancy. J. Am. 

Coll Nutr., 2002;21:33–37. 

 

 





In: Vitamin B12 ISBN: 978-1-63482-976-2 

Editors: Elena Mutti © 2015 Nova Science Publishers, Inc. 

 

 

 

 

 

 

Chapter 9 

 

 

 

FOOD SOURCE OF VITAMIN B12 
 

 

Elena Mutti

 

Department of Biomedical Sciences for Health,  

University of Milan, Milan, Italy 

 

 

ABSTRACT 
 

Vitamin B12 (cobalamin (Cbl)) is known to be synthesized only in 

certain bacteria. Cbl synthesized by bacteria is concentrated and stored 

mainly in the body of the animals.  

For this reason, the usual dietary sources of Cbl are animal-source 

based foods including meat, milk, eggs, fish, and shellfish. This can be a 

problem for some groups of people (vegetarians, vegans, elderly people, 

and people from underdeveloped countries) and so the need to study 

vegetable sources of Cbl and/or Cbl fortified foods.  

 

Keywords: algae, Cbl content, eggs, fish, fortified food, meat, milk, 

vegetarians 

 

 

INTRODUCTION 
 

In USA, the intake recommendations for Cbl are provided in the ―Dietary 

Reference Intakes‖ developed by the Food and Nutrition Board, Institute of 
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Medicine, National Academies [1]. The Dietary Reference Intake values, 

which vary by age, are equal to 0.4μg/day for newborns and can reach 

2.4μg/day for adults (2.6μg/day during pregnancy and 2.8μg/day for lactating 

woman) [1]. In Europe, the European Parliament sets the daily reference 

intakes for Cbl in adult at 2.5μg/day [2]. 

The main sources of Cbl are animal-source based foods, including meat, 

milk, eggs, fish, and shellfish. 

The USDA National Nutrient Database for Standard Reference is realized 

by the U.S. Department of Agriculture [3]. It is the major source of food 

composition data in the United States and probably worldwide. 

Data on Cbl content in foods described in this chapter are derived from 

USDA National Nutrient Database, unless otherwise stated. Food is described 

with relevant characteristics (e.g., raw, cooked etc.) since it has been 

demonstrated that different types of cooking methods could influence Cbl 

content or bioactivity. Cooking methods in the culinary arts are essentially 

divided into two categories: dry heat cooking, such as roasting, broiling or 

sautéing and moist heat cooking, like braising, steaming or poaching. 

It has been demonstrated that the process of roasting and grilling had little 

effect on the Cbl content in the final product as compared to the raw beef meat 

[4]. The fried product was characterised by about a 32% lower content of Cbl 

than in raw meat [4]. 

A study on round herring's meat demonstrated that Cbl contents were 

significantly decreased up to ~ 62% during cooking by grilling, boiling, frying, 

steaming, and microwaving. There was, however, no loss of Cbl during 

vacuum-packed pouch cooking [5]. 

Another study has demonstrated that conversion of Cbl to the inactive Cbl 

degradation products occurs in raw beef, pork, and milk during microwave 

heating [6]. The latter study on Cbl degradation should be kept into 

consideration since the intrinsic factor-mediated gastrointestinal absorption 

system in humans has evolved to selectively absorb active Cbl from naturally 

occurring Cbl compounds, including its degradation products and inactive 

corrinoids that are present in daily meal foods [7]. Finally, several studies 

reported that pasteurization appeared to reduce Cbl levels in milk, however 

significant variability between studies was noted and pasteurization time could 

influence the result [8]. 

USDA National Nutrient Database shows that food with the highest 

concentration of Cbl is a mollusk, clam cooked with moist heat (almost 100µg 

of Cbl/100 g total weight) [3]. Other shellfish with elevated level of Cbl are 

octopus (cooked, moist heat; 36 µg/100 g); oyster (cooked, dry heat; 
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24µg/100g) and mussel (cooked, moist heat; 24µg/100 g) [3]. Furthermore the 

broth from clams is also an excellent source of Cbl that contains around 2.7-

14.1μg of true Cbl/100 g [9]. 

The shellfishes are known to be excellent sources of Cbl since they siphon 

large quantities of Cbl-synthesizing microorganisms that present in water. 

Moreover, when corrinoid compounds were isolated and characterized in 

shellfish, such as oysters or mussels and short-necked clams, each corrinoid 

compound was identified as active Cbl [10].  

It is also important to notice that shellfish can be a privileged source of 

Cbl for some group of populations, i.e., French elderly people in which 

seafood provides 56% of the French recommended dietary allowance [11]. 

Analyzing the meat, the organ with the highest level of Cbl is liver 

(around 85 µg/100 g in lamb, beef and veal) followed by kidney (80 µg/100 g 

in lamb) and brain (24 µg/100 g in lamb) [3]. All of these concentrations are 

referred to cooked organs using pan-fried or braised methods. These data 

confirm the prior role of liver and kidney in Cbl metabolism and the old 

experimental data [12].  

Conversely, noblest cuts of meat present lower concentration of Cbl 

respect to liver and kidney. For instance, a beefsteak (boneless, outside skirt, 

separable lean only, trimmed to 0" fat, choice, cooked, grilled) contains ―only‖ 

6 µg/100 g [3]. 

USDA National Nutrient Database shows that Cbl contents of certain 

fishes, such as salmon, herring, mackerel (cooked, dry heat) are rather high, 

around 15 µg/100 g [3]. These data are very important since fish (or shellfish) 

contributes greatly to Cbl intake among Asians and African people and is a 

basic element of many diets, i.e., mediterranean diet. 

Finally, we had to consider two important animal products (eggs and milk 

with its derivatives) that can be consumed also by some groups of vegetarian, 

lacto-ovo vegetarians (see below for typing vegetarian groups). Cbl content in 

the whole boiled egg is not neglectable, about 1µg/100 g (almost all localized 

in yolk). Eggs provide essential fatty acids, proteins, choline, vitamins A, 

selenium, and also Cbl at levels above or comparable to those found in other 

animal-source foods, but they are relatively more affordable [13].  

Comparing Cbl content in milk from the most common domestic 

mammalian species it has been obtained that bovine milk ranged 0.2-

0.8µg/100mL, ovine milk 0.4-0.5µg/100mL, and caprine milk 0.07-

0.09µg/100mL [14]. 

Milk and dairy products are significant contributors of Cbl intakes. 

Indeed, it has demonstrated that in Dutch population dairy products 
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contributed around the 58% of Cbl intake in young children, and 44%-46% in 

adults and elderly people [15]. Moreover, milk and milk products seem to be 

among the lowest-cost sources of Cbl in USA (nutrient costs were calculated 

by dollar spent to guarantee 10% of the daily Cbl required) [16]. Interestingly, 

in a population-based study from Norway the level of Cbl in plasma was 

associated with intakes of increasing amounts of Cbl from dairy products or 

fish but not with intakes of Cbl from meat or eggs. This suggests that Cbl 

could be more bioavailable from dairy products [17]. These data were 

confirmed in an experimental study in pigs in which the intestinal absorption 

of Cbl after the ingestion of cows‘ milk was greater than after ingestion of 

equivalent amounts of cyano Cbl (CNCbl) [18]. 

During cheese-making procedure a percentage of Cbl contained in starting 

milk is lost in whey but Cbl concentration could also change during the 

ripening period due to its utilization and synthesis by microorganisms [19]. 

For this reason Cbl concentration in different types of cheese vary 

considerably. In fact, analysing different types of cheese it was identified that 

the highest concentration of Cbl was in Edam and Mozzarella (around 2.1 

µg/g) and the lowest in Roquefort (around 0.39µg/g) [19]. 

There are several main types of vegetarian groups: (1) Lacto-ovo 

vegetarians that consume lacto-ovo products (milk, milk products and eggs) 

but no animal meats (including fish and shellfish); (2) raw vegans whose diet 

is mostly based on fresh fruits, vegetables, nuts, and seeds; (3) fruitarians that 

eat only fruits, nuts, and seeds; (4) Buddhist vegetarians that exclude from 

their diet all animal products and some vegetables of Allium family; (5) 

macrobiotics who ban from their diet processed foods and most animal 

products; and (6) Jain vegetarians that consume dairy products, but exclude 

eggs and honey as well as root vegetables [20]. Vegetarians, especially the 

most restrictive groups, are considered a high-risk population for Cbl-

deficiency and for them it is necessary to identify plant-derived foods that 

contain high levels of Cbl or adopt Cbl-enriched foods in order to meet the 

daily recommended Cbl intake. However, since vegetarian diets are rich in 

folic acid, Cbl deficiency may be masked until severe health problems occur. 

Trace amounts of Cbl (< 0.1 µg/100 g of wet weight edible portion) were 

found in broccoli, asparagus, Japanese butterbur, mung bean sprouts, tassa 

jute, and water shield probably due to their ability to take up Cbl from certain 

organic fertilizer [10]. Furthermore, it has been demonstrated that adding an 

organic fertilizer, such as animal manure, significantly increased the Cbl 

content in vegetables, although the consumption of several hundred grams of 
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these vegetables would be insufficient to meet the recommended dietary 

allowances [20]. 

The Cbl contents of soybeans are low or undetectable but a fermented 

soybean-based food called tempe contains a considerable amount of Cbl (0.7-

8.0μg/100 g) [10] due to microbial activity during fermentation [21].  

Cbl is also found in various types of tea leaves (approximately 0.1-1.2μg 

Cbl per 100 g dry weight) and black tea seems to have the highest 

concentration [10, 20]. An experimental study demonstrated that Cbl in 

fermented black tea is bioavailable in rats (measured as decreased level of 

urinary methylmalonic acid excretion in Cbl-deficient (Cbl-D) rats treated 

with black tea) [22].  

The fruiting bodies of black trumpet (Craterellus cornucopioides), golden 

chanterelle (Cantharellus cibarius) and dried shiitake mushroom (Lentinula 

edodes) contain relatively high levels of Cbl (1.09-2.65μg/100 g dry weight for 

black trumpet and golden canterelle and 5.61μg/100 g dry weight for shiitake 

mushrooms) [7, 20]. The form of Cbl in mushrooms was found to be the same 

form found in beef, liver, and fish, suggesting that it is highly bioavailable 

[23]. However, in order to take the recommended dietary allowances for this 

nutrient (2.4μg/day) we should daily consume very large amounts of these 

mushrooms (approximately 50 g of dried shiitake and 100 g of black trumpet 

or golden chanterelle) [7, 23]. 

Various types of edible algae are consumed worldwide as food sources, 

but only dried green laver (Enteromorpha sp.) and purple laver (Porphyra sp.) 

contain substantial amounts of Cbl (approximately 63.6μg/100 g dry weight 

and32.3μg/100 g dry weight, respectively) and inactive corrinoid compounds 

are not present [19, 24]. 

However, it is largely debated if Cbl in alga is biovailable or not. A study 

from Dagnelie et al. reported that in children treated with plant Cbl sources 

(spirulina and nori alga) the blood Cbl level was increased, but the mean 

corpuscular volume deteriorated [25].  

Vice versa, studies from Takenaka et al. demonstrated that Cbl-D rats 

supplemented with dried purple laver decrease the urinary methylmalonic acid 

excretion, until undetectable level, and significantly increase the hepatic Cbl 

levels [26].  

See Figure 1 for a summary of the Cbl content in food. 

Recent studies suggest that Cbl-fortified food (fortification refers to ―the 

practice of deliberately increasing the content of an essential micronutrient in 

food product in order to improve the nutritional quality of the food and thereby 
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providing a public health benefit with minimal health risk ‖) may be an 

alternative source of Cbl.  

 

 

Figure 1. Cbl content in food. Cbl quantity in the most representative types of food. 

In fortification programs, the goal is to provide a considerable dose of the 

specific micronutrient to - ideally - the entire population. The suggested 

additional intake of Cbl through Cbl-fortified food is 1.0μg/day regardless of 

the age group. Accordingly, the amount of Cbl added to the fortified vehicle 

would be determined by average consumption patterns [27].  

In some countries, as United States [28] and United Kingdom, a large 

percentage of Cbl was intaken from fortified food and there are many vegan 

foods fortified with Cbl (i.e., non-dairy milks, meat substitutes, breakfast 

cereals, nutritional yeast). 

In particular, cereals fortified with Cbl comprise a high proportion of the 

dietary Cbl intake and may become a particularly valuable source of Cbl for 

the vegetarian groups that accepted processed foods and elderly people [10, 

29]. 

It is important to mention that Selhub et al. recommended that Cbl food 

fortification should accompany any folic acid fortification in order to avoid the 

exacerbation of both the biochemical and clinical status of Cbl deficiency 

sometimes associated to high plasma folate [30]. 
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Despite the fact that Cbl fortification appears to be a good alternative 

source, we associate to other authors on the need to safety evaluations of long-

term exposure to high-dose intake of Cbl fortified food [27]. 

Finally, Spirulina platensis is a cyanobacteria largely used in the food 

industry. Tablets containing Spirulina platensis are sold as dietary supplement, 

since it is known to contain a large amount of Cbl.  

Watanabe et al. [7] found that commercially available spirulina tablets 

contained a huge amount of Cbl (127-244 µg per 100 g weight), but only 17% 

was real Cbl and the major compounds (83%) were identified as pseudo 

vitamin Cbl that could be not so bioavailable in mammals [7, 31]. The datum 

was confirmed by a study that determined 35-38 µg methyl Cbl/ 100 g dry 

biomass of Spirulina platensis [32].  

However, a recent study on Indian pregnant and anemic women 

demonstrated that combined supplementation of iron-folic acid-Cbl and 

spirulina produce a higher increase of blood hemoglobin level than an iron-

folic acid-Cbl supplementation alone [33]. 

If eating habits, also supported by fortified foods and supplementation, are 

not enough to ensure a proper intake of Cbl or other causes of deficiency are 

present is necessary to take up a drug therapy, in which Cbl is usually present 

as CNCbl (for details see the Chapter ―Pharmacological use of vitamin B12 in 

therapy‖). 

 

 

CONCLUSION 
 

Food gives our bodies the nutrients needed to function. For many people, 

changing eating habits is very hard or sometimes impossible due to 

economical, social or cultural reasons. 

So it is very important a deep knowledge of all Cbl-containing foods, their 

Cbl concentrations and forms. At the same time, implement the study of 

alternative solutions (vegetarian or fortified food) target to people with 

different eating habits is a priority. It is also important to know the correct 

conservation and cooking techniques to prevent was ting food nutritional 

properties. 
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